首页> 外文期刊>Neural computation >Biologically Realistic Mean-Field Models of Conductance-Based Networks of Spiking Neurons with Adaptation
【24h】

Biologically Realistic Mean-Field Models of Conductance-Based Networks of Spiking Neurons with Adaptation

机译:基于电导的适应性尖刺神经元网络的生物学现实均值模型

获取原文
获取原文并翻译 | 示例

摘要

Accurate population models are needed to build very large-scale neural models, but their derivation is difficult for realistic networks of neurons, in particular when nonlinear properties are involved, such as conductance-based interactions and spike-frequency adaptation. Here, we consider such models based on networks of adaptive exponential integrate-and-fire excitatory and inhibitory neurons. Using a master equation formalism, we derive a mean-field model of such networks and compare it to the full network dynamics. The mean-field model is capable of correctly predicting the average spontaneous activity levels in asynchronous irregular regimes similar to in vivo activity. It also captures the transient temporal response of the network to complex external inputs. Finally, the mean-field model is also able to quantitatively describe regimes where high- and low-activity states alternate (up-down state dynamics), leading to slow oscillations. We conclude that such mean-field models are biologically realistic in the sense that they can capture both spontaneous and evoked activity, and they naturally appear as candidates to build very large-scale models involving multiple brain areas.
机译:需要精确的种群模型来构建非常大规模的神经模型,但是对于真实的神经元网络,尤其是涉及非线性特性(例如基于电导的交互作用和尖峰频率自适应)时,很难推导它们。在这里,我们考虑基于自适应指数积分并发射兴奋性和抑制性神经元网络的模型。使用主方程式形式主义,我们得出了此类网络的均值场模型,并将其与整个网络动力学进行了比较。平均场模型能够正确地预测类似于体内活动的异步不规则状态下的平均自发活动水平。它还捕获了网络对复杂外部输入的瞬态时间响应。最后,平均场模型还能够定量描述高活动状态和低活动状态交替(上下状态动态)导致缓慢振荡的状态。我们得出的结论是,这种均值场模型在生物学上具有现实意义,因为它们可以捕获自发性和诱发性活动,并且它们自然地可以作为构建涉及多个大脑区域的超大规模模型的候选对象。

著录项

  • 来源
    《Neural computation》 |2019年第4期|653-680|共28页
  • 作者单位

    CNRS, FRE 3693, Unite Neurosci Informat & Complexite, F-91198 Gif Sur Yvette, France;

    Univ Paris Diderot, INSERM, UMR 1149, Ctr Rech Inflammat, F-75018 Paris, France|PSL Res Univ, Dept Informat, Ecole Normale Super, Data Team,CNRS, F-75005 Paris, France|European Inst Theoret Neurosci, F-75012 Paris, France;

    European Inst Theoret Neurosci, F-75012 Paris, France|INFN, Sez Roma, I-00185 Rome, Italy;

    CNRS, FRE 3693, Unite Neurosci Informat & Complexite, F-91198 Gif Sur Yvette, France|European Inst Theoret Neurosci, F-75012 Paris, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号