首页> 外文期刊>Neural computation >How to Generate Ordered Maps by Maximizing the Mutual Information between Input and Output Signals
【24h】

How to Generate Ordered Maps by Maximizing the Mutual Information between Input and Output Signals

机译:如何通过最大化输入和输出信号之间的互信息来生成有序图

获取原文
获取原文并翻译 | 示例

摘要

A learning rule that performs gradient ascent in the average mutual information between input and an output signal is derived for a system having feedforward and lateral interactions. Several processes emerge as components of this learning rule: Hebb-like modification, and cooperation and competition among processing nodes. Topographic map formation is demonstrated using the learning rule. An analytic expression relating the average mutual information to the response properties of nodes and their geometric arrangement is derived in certain cases. This yields a relation between the local map magnification factor and the probability distribution in the input space. The results provide new links between unsupervised learning and information-theoretic optimization in a system whose properties are biologically motivated.
机译:对于具有前馈和横向相互作用的系统,得出在输入和输出信号之间的平均互信息中执行梯度上升的学习规则。该学习规则的组成部分包括几个过程:类似Hebb的修改以及处理节点之间的协作和竞争。使用学习规则演示地形图的形成。在某些情况下,得出了将平均互信息与节点的响应特性及其几何排列相关联的解析表达式。这产生了局部地图放大率与输入空间中的概率分布之间的关系。结果为系统具有生物学动机的系统中的无监督学习与信息理论优化之间提供了新的联系。

著录项

  • 来源
    《Neural computation》 |1989年第3期|402-411|共10页
  • 作者

    Linsker R;

  • 作者单位

    IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号