首页> 外文期刊>Neural computation >Predictive Minimum Description Length Criterion for Time Series Modeling with Neural Networks
【24h】

Predictive Minimum Description Length Criterion for Time Series Modeling with Neural Networks

机译:神经网络时间序列建模的预测最小描述长度标准

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear time series modeling with a multilayer perceptron network is presented. An important aspect of this modeling is the model selection, i.e., the problem of determining the size as well as the complexity of the model. To overcome this problem we apply the predictive minimum description length (PMDL) principle as a minimization criterion. In the neural network scheme it means minimizing the number of input and hidden units. Three time series modeling experiments are used to examine the usefulness of the PMDL model selection scheme. A comparison with the widely used cross-validation technique is also presented. In our experiments the PMDL scheme and the cross-validation scheme yield similar results in terms of model complexity. However, the PMDL method was found to be two times faster to compute. This is significant improvement since model selection in general is very time consuming.
机译:提出了使用多层感知器网络的非线性时间序列建模。该建模的一个重要方面是模型选择,即确定模型的大小和复杂性的问题。为了克服此问题,我们将预测最小描述长度(PMDL)原理用作最小化标准。在神经网络方案中,这意味着最小化输入和隐藏单元的数量。使用三个时间序列建模实验来检验PMDL模型选择方案的有效性。还提出了与广泛使用的交叉验证技术的比较。在我们的实验中,就模型复杂度而言,PMDL方案和交叉验证方案产生了相似的结果。但是,发现PMDL方法的计算速度快了两倍。由于模型选择通常非常耗时,因此这是一项重大改进。

著录项

  • 来源
    《Neural computation》 |1996年第3期|583-593|共11页
  • 作者单位

    Tampere University of Technology, Microelectronics Laboratory, P.O. Box 692, FIN-33101 Tampere, Finland;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号