首页> 外文期刊>Neural computation >Binary-Oscillator Networks: Bridging a Gap between Experimental and Abstract Modeling of Neural Networks
【24h】

Binary-Oscillator Networks: Bridging a Gap between Experimental and Abstract Modeling of Neural Networks

机译:二进制振荡器网络:弥合神经网络的实验模型与抽象模型之间的差距

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a simplified oscillator model, called binary-oscillator, and develops a class of neural network models having binary-oscillators as basic units. The binary-oscillator has a binary dynamic variable v = ±1 modeling the “membrane potential” of a neuron, and due to the presence of a “slow current” (as in a classical relaxation-oscillator) it can oscillate between two states. The purpose of the simplification is to enable abstract algorithmic study on the dynamics of oscillator networks. A binary-oscillator network is formally analogous to a system of stochastic binary spins (atomic magnets) in statistical mechanics.
机译:本文提出了一种简化的振荡器模型,称为二进制振荡器,并开发了一类以二进制振荡器为基本单位的神经网络模型。二元振荡器具有一个模拟神经元“膜电位”的二元动态变量v =±1,由于存在“慢电流”(如传统的张弛振荡器),它可以在两种状态之间振荡。简化的目的是使对振荡器网络动力学的抽象算法研究成为可能。二进制振荡器网络在形式上类似于统计力学中的随机二进制自旋(原子磁体)系统。

著录项

  • 来源
    《Neural computation》 |1996年第2期|319-339|共21页
  • 作者

    Wang W;

  • 作者单位

    Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号