首页> 外文期刊>Neural computation >A Penalty-Function Approach for Pruning Feedforward Neural Networks
【24h】

A Penalty-Function Approach for Pruning Feedforward Neural Networks

机译:修剪前馈神经网络的惩罚函数法

获取原文
获取原文并翻译 | 示例

摘要

This article proposes the use of a penalty function for pruning feedforward neural network by weight elimination. The penalty function proposed consists of two terms. The first term is to discourage the use of unnecessary connections, and the second term is to prevent the weights of the connections from taking excessively large values. Simple criteria for eliminating weights from the network are also given. The effectiveness of this penalty function is tested on three well-known problems: the contiguity problem, the parity problems, and the monks problems. The resulting pruned networks obtained for many of these problems have fewer connections than previously reported in the literature.
机译:本文提出使用惩罚函数通过权重消除来修剪前馈神经网络。建议的惩罚函数由两个项组成。第一项是防止使用不必要的连接,第二项是防止连接的权重取太大的值。还给出了消除网络权重的简单标准。在三个众所周知的问题上测试了此罚函数的有效性:连续性问题,奇偶性问题和僧侣问题。针对这些问题中的许多问题而获得的修剪后的网络比以前文献中报道的连接数更少。

著录项

  • 来源
    《Neural computation》 |1997年第1期|185-204|共20页
  • 作者

    Setiono R;

  • 作者单位

    Department of Information Systems and Computer Science, National University of Singapore, Kent Ridge, Singapore 0511, Republic of Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号