首页> 外文期刊>Neural computation >Blind Source Separation and Deconvolution: The Dynamic Component Analysis Algorithm
【24h】

Blind Source Separation and Deconvolution: The Dynamic Component Analysis Algorithm

机译:盲源分离和反卷积:动态分量分析算法

获取原文

摘要

We derive a novel family of unsupervised learning algorithms for blind separation of mixed and convolved sources. Our approach is based on formulating the separation problem as a learning task of a spatiotemporal generative model, whose parameters are adapted iteratively to minimize suitable error functions, thus ensuring stability of the algorithms. The resulting learning rules achieve separation by exploiting high-order spatiotemporal statistics of the mixture data. Different rules are obtained by learning generative models in the frequency and time domains, whereas a hybrid frequency-time model leads to the best performance. These algorithms generalize independent component analysis to the case of convolutive mixtures and exhibit superior performance on instantaneous mixtures. An extension of the relative-gradient concept to the spatiotemporal case leads to fast and efficient learning rules with equivariant properties. Our approach can incorporate information about the mixing situation when available, resulting in a “semiblind” separation method. The spatiotemporal redundancy reduction performed by our algorithms is shown to be equivalent to information-rate maximization through a simple network. We illustrate the performance of these algorithms by successfully separating instantaneous and convolutive mixtures of speech and noise signals.
机译:我们派生了一个新颖的无监督学习算法家族,用于混合和卷积源的盲分离。我们的方法基于将分离问题表述为时空生成模型的学习任务,该模型的参数经过迭代调整以最小化合适的误差函数,从而确保算法的稳定性。由此产生的学习规则通过利用混合数据的高阶时空统计数据来实现分离。通过在频域和时域中学习生成模型,可以获得不同的规则,而混合频率-时间模型将导致最佳性能。这些算法将独立成分分析推广到卷积混合物的情况,并在瞬时混合物上表现出卓越的性能。相对梯度概念到时空情况的扩展导致具有等变属性的快速有效的学习规则。我们的方法可以结合有关混合情况的信息(如果可用),从而形成“半盲”分离方法。我们的算法所执行的时空冗余减少等效于通过简单网络实现的信息速率最大化。我们通过成功分离语音和噪声信号的瞬时和卷积混合来说明这些算法的性能。

著录项

  • 来源
    《Neural computation》 |1998年第6期|1373-1424|共52页
  • 作者

    Attias H; Schreiner C;

  • 作者单位

    Sloan Center for Theoretical Neurobiology and W. M. Keck Foundation Center for Integrative Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0444, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号