首页> 外文期刊>Neural computation >Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model
【24h】

Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model

机译:随机积分与发射神经编码模型的最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

We examine a cascade encoding model for neural response in which a linear filtering stage is followed by a noisy, leaky, integrate-and-fire spike generation mechanism. This model provides a biophysically more realistic alternative to models based on Poisson (memoryless) spike generation, and can effectively reproduce a variety of spiking behaviors seen in vivo. We describe the maximum likelihood estimator for the model parameters, given only extracellular spike train responses (not intracellular voltage data). Specifically, we prove that the log-likelihood function is concave and thus has an essentially unique global maximum that can be found using gradient ascent techniques. We develop an efficient algorithm for computing the maximum likelihood solution, demonstrate the effectiveness of the resulting estimator with numerical simulations, and discuss a method of testing the model's validity using time-rescaling and density evolution techniques.
机译:我们检查了神经反应的级联编码模型,其中线性过滤阶段之后是噪声,泄漏,积分和发射尖峰生成机制。此模型为基于Poisson(无内存)尖峰生成的模型提供了生物学上更现实的替代方案,并且可以有效地重现体内看到的各种尖峰行为。我们描述了模型参数的最大似然估计,仅给出了细胞外尖峰序列的响应(而不是细胞内电压数据)。具体而言,我们证明对数似然函数是凹的,因此具有可以使用梯度上升技术找到的本质上唯一的全局最大值。我们开发了一种用于计算最大似然解的有效算法,并通过数值模拟演示了所得估计器的有效性,并讨论了使用时间重定标度和密度演化技术测试模型有效性的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号