首页> 外文期刊>Neural computation >Temporally Asymmetric Learning Supports Sequence Processing in Multi-Winner Self-Organizing Maps
【24h】

Temporally Asymmetric Learning Supports Sequence Processing in Multi-Winner Self-Organizing Maps

机译:临时非对称学习支持多赢者自组织映射中的序列处理

获取原文
获取原文并翻译 | 示例

摘要

We examine the extent to which modified Kohonen self-organizing maps (SOMs) can learn unique representations of temporal sequences while still supporting map formation. Two biologically inspired extensions are made to traditional SOMs: selection of multiple simultaneous rather than single "winners" and the use of local intramap connections that are trained according to a temporally asymmetric Hebbian learning rule. The extended SOM is then trained with variable-length temporal sequences that are composed of phoneme feature vectors, with each sequence corresponding to the phonetic transcription of a noun. The model transforms each input sequence into a spatial representation (final activation pattern on the map). Training improves this transformation by, for example, increasing the uniqueness of the spatial representations of distinct sequences, while still retaining map formation based on input patterns. The closeness of the spatial representations of two sequences is found to correlate significantly with the sequences' similarity. The extended model presented here raises the possibility that SOMs may ultimately prove useful as visualization tools for temporal sequences and as preprocessors for sequence pattern recognition systems.
机译:我们研究了改良的Kohonen自组织图(SOM)在多大程度上可以学习时间序列的唯一表示,同时仍然支持图的形成。对传统SOM进行了两种生物学启发的扩展:选择多个同时(而不是单个)“优胜者”,以及使用根据时间上不对称的Hebbian学习规则进行训练的本地地图内部连接。然后使用可变长度的时间序列(由音素特征向量组成)训练扩展的SOM,每个序列对应于名词的语音转录。该模型将每个输入序列转换为空间表示形式(地图上的最终激活模式)。训练通过例如增加不同序列的空间表示的唯一性来改善这种转换,同时仍保留基于输入模式的图谱形成。发现两个序列的空间表示的接近度与序列的相似性显着相关。这里介绍的扩展模型提出了SOM最终被证明可用作时间序列可视化工具和用作序列模式识别系统的预处理器的可能性。

著录项

  • 来源
    《Neural computation》 |2004年第3期|p.535-561|共27页
  • 作者

    Reiner Schulz; James A. Reggia;

  • 作者单位

    Departments of Computer Science and Neurology, and UMIACS, University of Maryland, College Park, MD 20742, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号