首页> 外文期刊>Neural computation >A Machine Learning Method for Extracting Symbolic Knowledge from Recurrent Neural Networks
【24h】

A Machine Learning Method for Extracting Symbolic Knowledge from Recurrent Neural Networks

机译:一种从递归神经网络中提取符号知识的机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

Neural networks do not readily provide an explanation of the knowledge stored in their weights as part of their information processing. Until recently, neural networks were considered to be black boxes, with the knowledge stored in their weights not readily accessible. Since then, research has resulted in a number of algorithms for extracting knowledge in symbolic form from trained neural networks. This article addresses the extraction of knowledge in symbolic form from recurrent neural networks trained to behave like deterministic finite-state automata (DFAs). To date, methods used to extract knowledge from such networks have relied on the hypothesis that networks' states tend to cluster and that clusters of network states correspond to DFA states. The computational complexity of such a cluster analysis has led to heuristics that either limit the number of clusters that may form during training or limit the exploration of the space of hidden recurrent state neurons. These limitations, while necessary, may lead to decreased fidelity, in which the extracted knowledge may not model the true behavior of a trained network, perhaps not even for the training set. The method proposed here uses a polynomial time, symbolic learning algorithm to infer DFAs solely from the observation of a trained network's input-output behavior. Thus, this method has the potential to increase the fidelity of the extracted knowledge.
机译:神经网络不容易提供对其权重中存储的知识的解释,作为其信息处理的一部分。直到最近,神经网络还被认为是黑匣子,其权重中存储的知识尚不容易获得。从那时起,研究产生了许多算法,用于从受过训练的神经网络中提取符号形式的知识。本文介绍了从循环神经网络中以训练形式表现为确定性有限状态自动机(DFA)的形式,以符号形式提取知识的方法。迄今为止,用于从此类网络中提取知识的方法依赖于以下假设:网络状态倾向于聚类,并且网络状态聚类对应于DFA状态。这种聚类分析的计算复杂性导致启发式分析,该启发式要么限制在训练期间可能形成的聚类的数量,要么限制对隐藏的复发状态神经元空间的探索。这些限制,虽然必要,但可能导致保真度降低,其中所提取的知识可能无法为训练网络的真实行为建模,甚至可能不会针对训练集进行建模。此处提出的方法使用多项式时间符号学习算法来仅从对训练网络的输入输出行为的观察中推断出DFA。因此,该方法具有提高所提取知识的保真度的潜力。

著录项

  • 来源
    《Neural computation》 |2004年第1期|p.59-71|共13页
  • 作者

    A. Vahed; C.W. Omlin;

  • 作者单位

    Department of Computer Science, University of the Western Cape, 7535 Bellville, South Africa;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号