首页> 外文期刊>Neural computation >Input-Driven Oscillations in Networks with Excitatory and Inhibitory Neurons with Dynamic Synapses
【24h】

Input-Driven Oscillations in Networks with Excitatory and Inhibitory Neurons with Dynamic Synapses

机译:具有动态突触的兴奋性和抑制性神经元网络中的输入驱动振荡

获取原文
获取原文并翻译 | 示例

摘要

Previous work has shown that networks of neurons with two coupled layers of excitatory and inhibitory neurons can reveal oscillatory activity. For example, Borgers and Kopell (2003) have shown that oscillations occur when the excitatory neurons receive a sufficiently large input. A constant drive to the excitatory neurons is sufficient for oscillatory activity. Other studies (Doiron, Chacron, Maler, Longtin, & Bastian, 2003; Doiron, Lindner, Longtin, Maler, & Bastian, 2004) have shown that networks of neurons with two coupled layers of excitatory and inhibitory neurons reveal oscillatory activity only if the excitatory neurons receive correlated input, regardless of the amount of excitatory input. In this study, we show that these apparently contradictory results can be explained by the behavior of a single model operating in different regimes of parameter space. Moreover, we show that adding dynamic synapses in the inhibitory feedback loop provides a robust network behavior over a broad range of stimulus intensities, contrary to that of previous models. A remarkable property of the introduction of dynamic synapses is that the activity of the network reveals synchronized oscillatory components in the case of correlated input, but also reflects the temporal behavior of the input signal to the excitatory neurons. This allows the network to encode both the temporal characteristics of the input and the presence of spatial correlations in the input simultaneously.
机译:先前的工作表明,具有两个耦合的兴奋性神经元和抑制​​性神经元层的神经元网络可以揭示振荡活动。例如,Borgers和Kopell(2003)已表明,当兴奋性神经元收到足够大的输入时,就会发生振荡。持续驱动兴奋性神经元足以产生振荡活动。其他研究(Doiron,Chacron,Maler,Longtin和Bastian,2003年; Doiron,Lindner,Longtin,Maler和Bastian,2004年)显示,神经元网络具有两层兴奋性和抑制性神经元耦合,只有在兴奋性神经元接收相关的输入,而不考虑兴奋性输入的数量。在这项研究中,我们表明,这些明显矛盾的结果可以用在不同参数空间范围内运行的单个模型的行为来解释。此外,我们表明,在抑制性反馈回路中添加动态突触可在广泛的刺激强度范围内提供强大的网络行为,这与以前的模型相反。动态突触的引入的显着特性是,在相关输入的情况下,网络的活动揭示了同步的振荡成分,但也反映了输入信号对兴奋性神经元的时间行为。这允许网络同时对输入的时间特性和输入中的空间相关性进行编码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号