首页> 外文期刊>Neural computation >Exact Subthreshold Integration with Continuous Spike Times in Discrete-Time Neural Network Simulations
【24h】

Exact Subthreshold Integration with Continuous Spike Times in Discrete-Time Neural Network Simulations

机译:离散时间神经网络仿真中具有连续峰值时间的精确亚阈值集成

获取原文
获取原文并翻译 | 示例

摘要

Very large networks of spiking neurons can be simulated efficiently in parallel under the constraint that spike times are bound to an equidistant time grid. Within this scheme, the subthreshold dynamics of a wide class of integrate-and-fire-type neuron models can be integrated exactly from one grid point to the next. However, the loss in accuracy caused by restricting spike times to the grid can have undesirable consequences, which has led to interest in interpolating spike times between the grid points to retrieve an adequate representation of network dynamics. We demonstrate that the exact integration scheme can be combined naturally with off-grid spike events found by interpolation. We show that by exploiting the existence of a minimal synaptic propagation delay, the need for a central event queue is removed, so that the precision of event-driven simulation on the level of single neurons is combined with the efficiency of time-driven global scheduling. Further, for neuron models with linear subthreshold dynamics, even local event queuing can be avoided, resulting in much greater efficiency on the single-neuron level. These ideas are exemplified by two implementations of a widely used neuron model. We present a measure for the efficiency of network simulations in terms of their integration error and show that for a wide range of input spike rates, the novel techniques we present are both more accurate and faster than standard techniques.
机译:在尖峰时间绑定到等距时间网格的约束下,可以高效地并行模拟非常大的尖峰神经元网络。在此方案中,可以从一个网格点到下一个网格点精确地集成各种集成和发射型神经元模型的亚阈值动力学。但是,由于将尖峰时间限制在网格上而导致的精度损失可能会带来不良后果,这引起了人们的兴趣,即在网格点之间插值尖峰时间以获取网络动态的适当表示。我们证明了精确的积分方案可以自然地与插值发现的离网尖峰事件相结合。我们表明,通过利用最小突触传播延迟的存在,消除了对中央事件队列的需要,从而将事件驱动模拟在单个神经元水平上的精度与时间驱动全局调度的效率结合在一起。此外,对于具有线性亚阈值动力学的神经元模型,甚至可以避免局部事件排队,从而在单神经元水平上产生更高的效率。这些想法通过广泛使用的神经元模型的两种实现方式得到例证。我们针对集成度方面的网络仿真效率提出了一种衡量标准,并表明,对于各种输入尖峰速率,我们提供的新颖技术比标准技术更准确,更快。

著录项

  • 来源
    《Neural computation》 |2007年第1期|47-79|共33页
  • 作者单位

    Computational Neurophysics, Institute of Biology III, and Bernstein Center for Computational Neuroscience, Albert-Ludwigs-University, 79104 Freiburg, Germany, abigail@biologie.uni-freiburg.de;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号