首页> 外文OA文献 >Continuous-time spiking neural networks: general paradigm and event-driven simulation
【2h】

Continuous-time spiking neural networks: general paradigm and event-driven simulation

机译:连续时间尖峰神经网络:一般范例和事件驱动的仿真

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this research is to develop a simple and effective continuous-time Spiking Neural Network simulator, that takes into account basic biological neuron parameters, in which the latency time is the main effect for the spike generation. udA preliminary accurate analysis of the latency time has been developed, applying classical modelling methods to single neurons, by simulations on the most accurate biological model: the Hodgkin-Huxley Model. On the basis of the classical neuron theory, other fundamentals parameters of the systems are defined, such as subthreshold decay, refractory period, inhibitory behaviour, synaptic plasticity, etc.udIndeed, spike transmission and latency problems introduce the necessity of using continuous time simulation. Thus, direct use of digital computational methods, seem not completely appropriate. Due to the implicit high-sensitivity of the overall system to close events (conferred by the latency), and the high temporal dynamics of activity, an event-driven simulation method is necessary. In fact, for the proposed neural model, high precision and effectiveness are basically required.udA class of fully asynchronous Spiking Neural Networks with a high biological plausibility is definitively proposed, and networks with up to 100.000 neurons can be simulated in a quite short time with a simple MATLAB program. Is also possible to apply plasticity algorithms to emulate interesting global effects, as the Neuronal Group Selection or the jitter-reduction. Moreover, such a parallel processing system could be used for, but not only, engineering problems that involve the use of the classic artificial neural networks (e.g., pattern recognition) . Other applications concern the operation study of biological neural circuits and the exploration of chaotic dynamics in nervous system.
机译:这项研究的目的是开发一种简单有效的连续时间尖峰神经网络模拟器,该模拟器考虑了基本的生物神经元参数,其中等待时间是尖峰产生的主要作用。 ud通过对最精确的生物学模型:霍奇金-赫克斯利模型进行仿真,已经开发出了对潜伏时间的初步精确分析,将经典的建模方法应用于单个神经元。在经典神经元理论的基础上,定义了系统的其他基本参数,例如阈下衰减,不应期,抑制行为,突触可塑性等。 。因此,直接使用数字计算方法似乎并不完全合适。由于关闭事件的整个系统具有隐式的高灵敏度(由延迟引起),并且活动的时间动态性很高,因此需要一种事件驱动的仿真方法。实际上,对于所提出的神经模型,基本上需要高精度和有效性。 ud明确提出了一种具有高生物似然性的全异步Spiking神经网络,并且可以在相当短的时间内模拟多达100.000个神经元的网络。用一个简单的MATLAB程序。也可以应用可塑性算法来模拟有趣的全局效果,例如神经元组选择或抖动减少。而且,这样的并行处理系统可以用于但不仅用于涉及使用经典的人工神经网络(例如,模式识别)的工程问题。其他应用涉及生物神经回路的运筹学以及对神经系统混沌动力学的探索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号