首页> 美国卫生研究院文献>Frontiers in Neuroinformatics >Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator
【2h】

Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator

机译:尖峰神经网络模拟器中连续时间动力学的集成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.
机译:当代的神经网络动力学建模方法包括两类重要的模型:以生物为基础的尖峰神经元模型和功能性基于速率的单位。我们提出了一个统一的仿真框架,该框架支持将两者结合起来以进行多尺度建模,可以通过加标网络仿真来对均场方法进行定量验证,并通过使用相同的仿真代码和相同的网络来提高可靠性两个模型类别的模型规格。虽然大多数尖峰模拟都依赖离散事件的通信,但是速率模型需要神经元之间的时间连续交互。利用尖峰网络仿真中包含间隙连接的概念相似性,我们得出了尖峰网络仿真器中基于速率的模型之间的瞬时和延迟交互的参考实现。速率动态与通用连接和通信基础结构的分离确保了框架的灵活性。除了标准实现之外,我们还提出了一种基于波形松弛技术的迭代方法,以减少基于瞬时交互的基于速率的模型的大规模仿真的通信并提高性能。最后,我们通过考虑文献中的各种示例(从随机网络到神经场模型)来证明该框架的广泛适用性。该研究为联合仿真中基于速率的模型和峰值模型之间的交互提供了前提。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号