首页> 外文期刊>Neural computation >Sequential Monte Carlo Point-Process Estimation of Kinematics from Neural Spiking Activity for Brain-Machine Interfaces
【24h】

Sequential Monte Carlo Point-Process Estimation of Kinematics from Neural Spiking Activity for Brain-Machine Interfaces

机译:运动学从脑机接口的神经尖峰活动的运动学的顺序蒙特卡罗点过程估计。

获取原文
获取原文并翻译 | 示例

摘要

Many decoding algorithms for brain machine interfaces' (BMIs) estimate hand movement from binned spike rates, which do not fully exploit the resolution contained in spike timing and may exclude rich neural dynamics from the modeling. More recently, an adaptive filtering method based on a Bayesian approach to reconstruct the neural state from the observed spike times has been proposed. However, it assumes and propagates a gaussian distributed state posterior density, which in general is too restrictive. We have also proposed a sequential Monte Carlo estimation methodology to reconstruct the kinematic states directly from the multichannel spike trains. This letter presents a systematic testing of this algorithm in a simulated neural spike train decoding experiment and then in BMI data. Compared to a point-process adaptive filtering algorithm with a linear observation model and a gaussian approximation (the counterpart for point processes of the Kalman filter), our sequential Monte Carlo estimation methodology exploits a detailed encoding model (tuning function) derived for each neuron from training data. However, this added complexity is translated into higher performance with real data. To deal with the intrinsic spike randomness in online modeling, several synthetic spike trains are generated from the intensity function estimated from the neurons and utilized as extra model inputs in an attempt to decrease the variance in the kinematic predictions. The performance of the sequential Monte Carlo estimation methodology augmented with this synthetic spike input provides improved reconstruction, whichrnraises interesting questions and helps explain the overall modeling requirements better.
机译:许多用于脑机接口(BMI)的解码算法都根据合并的尖峰速率来估计手的运动,而这种速率不能完全利用尖峰时序中包含的分辨率,并且可能会从建模中排除丰富的神经动力学。最近,已经提出了一种基于贝叶斯方法的自适应滤波方法,以从观察到的尖峰时间重建神经状态。但是,它假定并传播了高斯分布状态的后验密度,该密度通常过于严格。我们还提出了一种顺序蒙特卡洛估计方法,可直接从多通道尖峰串重建运动状态。这封信提出了在模拟神经尖峰序列解码实验中然后在BMI数据中对该算法的系统测试。与具有线性观察模型和高斯近似(卡尔曼滤波器的点过程的对等物)的点过程自适应滤波算法相比,我们的顺序蒙特卡洛估计方法利用了从中导出的每个神经元的详细编码模型(调谐函数)训练数据。但是,这种增加的复杂性转化为实际数据的更高性能。为了处理在线建模中的固有尖峰随机性,从神经元估计的强度函数生成了几个合成的尖峰序列,并将它们用作额外的模型输入,以尝试减少运动学预测中的方差。顺序蒙特卡洛估计方法的性能得到了此合成尖峰输入的增强,从而提供了改进的重构,从而提出了有趣的问题并有助于更好地解释整体建模要求。

著录项

  • 来源
    《Neural computation》 |2009年第10期|2894-2930|共37页
  • 作者单位

    Department of Electrical and Computer Engineering, University of Florida,Gainesville, FL 32611, U.S.A.;

    Department of Electrical and Computer Engineering, University of Florida,Gainesville, FL 32611, U.S.A.;

    Department of Electrical and Computer Engineering, University of Florida,Gainesville, FL 32611, U.S.A.;

    Department of Pediatrics, Neuroscience, and Biomedical Engineering,University of Florida, Gainesville, FL 32610, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号