首页> 外文期刊>Neural computation >Extracting State Transition Dynamics from Multiple Spike Trains Using Hidden Markov Models with Correlated Poisson Distribution
【24h】

Extracting State Transition Dynamics from Multiple Spike Trains Using Hidden Markov Models with Correlated Poisson Distribution

机译:使用相关泊松分布的隐马尔可夫模型从多道钉车中提取状态转变动力学

获取原文
获取原文并翻译 | 示例

摘要

Neural activity is nonstationary and varies across time. Hidden Markov models (HMMs) have been used to track the state transition among quasi-stationary discrete neural states. Within this context, an independent Poisson model has been used for the output distribution of HMMs; hence, the model is incapable of tracking the change in correlation without modulating the firing rate. To achieve this, we applied a multivariate Poisson distribution with correlation terms for the output distribution of HMMs. We formulated a variational Bayes (VB) inference for the model. The VB could automatically determine the appropriate number of hidden states and correlation types while avoiding the overlearning problem. We developed an efficient algorithm for computing posteriors using the recursive relationship of a multivariate Poisson distribution. We demonstrated the performance of our method on synthetic data and real spike trains recorded from a songbird.
机译:神经活动是不稳定的,并随时间而变化。隐马尔可夫模型(HMM)已用于跟踪准平稳离散神经状态之间的状态转换。在这种情况下,已经将独立的泊松模型用于HMM的输出分布。因此,该模型无法在不调制点火速率的情况下跟踪相关性的变化。为此,我们将带有相关项的多元Poisson分布应用于HMM的输出分布。我们为模型制定了变分贝叶斯(VB)推理。 VB可以自动确定适当数量的隐藏状态和相关类型,同时避免过度学习的问题。我们使用多元Poisson分布的递归关系开发了一种计算后验的有效算法。我们证明了我们的方法在合成数据和从鸣鸟记录的真实峰值序列上的性能。

著录项

  • 来源
    《Neural computation》 |2010年第9期|P.2369-2389|共21页
  • 作者单位

    Graduate School of Frontier Sciences, University of Tokyo, 277-8561 Chiba, Japan, and RIKEN Brain Science Institute, 35-0198 Saitama, Japan;

    rnRIKEN Brain Science Institute, 35-0198 Saitama, Japan;

    rnRIKEN Brain Science Institute, 35-0198 Saitama, Japan;

    rnGraduate School of Frontier Sciences, University of Tokyo, 277-8561 Chiba, Japan, and RIKEN Brain Science Institute, 35-0198 Saitama, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号