首页> 外文期刊>Neural computation >Adaptive Decoding for Brain-Machine Interfaces Through Bayesian Parameter Updates
【24h】

Adaptive Decoding for Brain-Machine Interfaces Through Bayesian Parameter Updates

机译:通过贝叶斯参数更新的脑机接口自适应解码

获取原文
获取原文并翻译 | 示例

摘要

Brain-machine interfaces (BMIs) transform the activity of neurons recorded in motor areas of the brain into movements of external actuators. Representation of movements by neuronal populations varies over time, during both voluntary limb movements and movements controlled through BMIs, due to motor learning, neuronal plasticity, and instability in recordings. To ensure accurate BMI performance over long time spans, BMI decoders must adapt to these changes. We propose the Bayesian regression self-training method for updating the parameters of an un-scented Kalman filter decoder. This novel paradigm uses the decoder's output to periodically update its neuronal tuning model in a Bayesian linear regression. We use two previously known statistical formulations of Bayesian linear regression: a joint formulation, which allows fast and exact inference, and a factorized formulation, which allows the addition and temporary omission of neurons from updates but requires approximate variational inference. To evaluate these methods, we performed offline reconstructions and closed-loop experiments with rhesus monkeys implanted cortically with microwire electrodes. Offline reconstructions used data recorded in areas Ml, SI, PMd, SMA, and PP of three monkeys while they controlled a cursor using a handheld joystick. The Bayesian regression self-training updates significantly improved the accuracy of offline reconstructions compared to the same decoder without updates.
机译:脑机接口(BMI)将记录在大脑运动区域中的神经元的活动转化为外部执行器的运动。由于运动学习,神经元可塑性和录音的不稳定性,在自愿肢体运动和通过BMI控制的运动过程中,神经元群体对运动的表示随时间而变化。为了确保长时间的BMI性能准确,BMI解码器必须适应这些变化。我们提出了贝叶斯回归自训练方法来更新无味卡尔曼滤波器解码器的参数。这种新颖的范例使用解码器的输出以贝叶斯线性回归的方式定期更新其神经元调整模型。我们使用贝叶斯线性回归的两个先前已知的统计公式:一个联合公式,它允许快速而精确的推断,以及一个分解式公式,它允许从更新中添加和暂时省略神经元,但需要近似的变化推断。为了评估这些方法,我们对皮层植入微丝电极的恒河猴进行了离线重建和闭环实验。离线重建使用记录在三只猴子的M1,SI,PMd,SMA和PP区域中的数据,而它们使用手持操纵杆控制光标。与没有更新的相同解码器相比,贝叶斯回归自训练更新显着提高了离线重构的准确性。

著录项

  • 来源
    《Neural computation》 |2011年第12期|p.3162-3204|共43页
  • 作者单位

    Department of Neurobiology and Center for Neuroengineering, Duke University,Durham, NC 27710, U.S.A.;

    Department of Neurobiology and Center for Neuroengineering, Duke University,Durham, NC 27710, U.S.A.;

    Department of Neurobiology and Center for Neuroengineering, Duke University,Durham, NC 27710, U.S.A.;

    Departments of Neurobiology, Biomedical Engineering, and Psychology and Neuroscience, and Center for Neuroengineering, Duke University, Durham, NC 27719, U.S.A.Edmond and Lily Safra International Institute of Neuroscience of Natal, 59066-060 Natal, Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号