首页> 外文期刊>Journal of neural engineering >Impact of referencing scheme on decoding performance of LFP-based brain-machine interface
【24h】

Impact of referencing scheme on decoding performance of LFP-based brain-machine interface

机译:引用方案对基于LFP脑机接口解码性能的影响

获取原文
获取原文并翻译 | 示例

摘要

Objective. There has recently been an increasing interest in local field potential (LFP) forbrain-machine interface (BMI) applications due to its desirable properties (signal stability andlow bandwidth). LFP is typically recorded with respect to a single unipolar reference which issusceptible to common noise. Several referencing schemes have been proposed to eliminate thecommon noise, such as bipolar reference, current source density (CSD), and common averagereference (CAR). However, to date, there have not been any studies to investigate the impact ofthese referencing schemes on decoding performance of LFP-based BMIs. Approach. To address thisissue, we comprehensively examined the impact of different referencing schemes and LFP featureson the performance of hand kinematic decoding using a deep learning method. We used LFPschronically recorded from the motor cortex area of a monkey while performing reaching tasks.Main results. Experimental results revealed that local motor potential (LMP) emerged as the mostinformative feature regardless of the referencing schemes. Using LMP as the feature, CAR wasfound to yield consistently better decoding performance than other referencing schemes overlong-term recording sessions. Significance. Overall, our results suggest the potential use of LMPcoupled with CAR for enhancing the decoding performance of LFP-based BMIs.
机译:客观的。最近对地方实地潜力(LFP)的兴趣日益增长脑机接口(BMI)应用由于其理想的性质(信号稳定性和带宽低)。通常相对于单极参考记录LFP,这是一个单极参考易于常见的噪音。已经提出了几种参考方案来消除常见噪声,如双极参考,电流源密度(CSD)和常见平均值参考(汽车)。但是,迄今为止,还没有任何研究可以调查影响的影响这些参考方案是基于LFP的BMI的解码性能。方法。解决这个问题问题,我们全面地检查了不同参考计划和LFP功能的影响关于使用深层学习方法的手动对解码的性能。我们使用了LFPS.在执行达到任务的同时从猴子的电机皮质区域记录。主要结果。实验结果表明,局部电机潜力(LMP)最大地出现无论引用方案如何,信息功能如何。使用LMP作为功能,汽车是发现始终如一的解码性能,而不是其他参考方案长期录音会话。意义。总体而言,我们的结果表明潜在使用LMP加上汽车,提高基于LFP的BMI的解码性能。

著录项

  • 来源
    《Journal of neural engineering》 |2021年第1期|016028.1-016028.15|共15页
  • 作者单位

    Department of Electrical and Electronic Engineering Imperial College London London SW7 2BT United Kingdom Centre for Bio-Inspired Technology Institute of Biomedical Engineering Imperial College London London SW7 2AZ United Kingdom;

    Department of Electrical and Electronic Engineering Imperial College London London SW7 2BT United Kingdom Centre for Bio-Inspired Technology Institute of Biomedical Engineering Imperial College London London SW7 2AZ United Kingdom Care Research & Technology Centre UK Dementia Research Institute at Imperial College London London United Kingdom;

    Department of Electrical and Electronic Engineering Imperial College London London SW7 2BT United Kingdom;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    brain-machine interface; local field potential; local motor potential; referencing scheme; common average reference; neural decoding; deep learning;

    机译:脑机接口;本地田间潜力;本地电机潜力;参考方案;常见的平均参考;神经解码;深度学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号