首页> 外文期刊>Neural computation >Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains
【24h】

Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains

机译:高效的马尔可夫链蒙特卡洛方法用于神经秒杀列车的解码

获取原文

摘要

Stimulus reconstruction or decoding methods provide an important tool for understanding how sensory and motor information is represented in neural activity. We discuss Bayesian decoding methods based on an encoding generalized linear model (GLM) that accurately describes how stimuli are transformed into the spike trains of a group of neurons. The form of the GLM likelihood ensures that the posterior distribution over the stimuli that caused an observed set of spike trains is log concave so long as the prior is. This allows the maximum a posteriori (MAP) stimulus estimate to be obtained using efficient optimization algorithms. Unfortunately, the MAP estimate can have a relatively large average error when the posterior is highly nongaussian. Here we compare several Markov chain Monte Carlo (MCMC) algorithms that allow for the calculation of general Bayesian estimators involving posterior expectations (conditional on model parameters). An efficient version of the hybrid Monte Carlo (HMC) algorithm was significantly superior to other MCMC methods for gaussian priors. When the prior distribution has sharp edges and corners, on the other hand, the "hit-and-run" algorithm performed better than other MCMC methods. Using these algorithms, we show that for this latter class of priors, the posterior mean estimate can have a considerably lower average error than MAP, whereas for gaussian priors, the two estimators have roughly equal efficiency. We also address the application of MCMC methods for extracting nonmarginal properties of the posterior distribution. For example, by using MCMC to calculate the mutual information between the stimulus and response, we verify the validity of a computationally efficient Laplace approximation to this quantity for gaussian priors in a wide range of model parameters; this makes direct model-based computation of the mutual information tractable even in the case of large observed neural populations, where methods based on binning the spike train fail. Finally, we consider the effect of uncertainty in the GLM parameters on the posterior estimators.
机译:刺激重建或解码方法为理解神经活动中感觉和运动信息的表达提供了重要工具。我们讨论基于编码广义线性模型(GLM)的贝叶斯解码方法,该方法准确地描述了如何将刺激转换为一组神经元的尖峰序列。 GLM可能性的形式可确保在导致先观察到的一系列尖峰序列的刺激上的后验分布是对数凹入的,只要先验分布就可以。这允许使用有效的优化算法获得最大的后验(MAP)刺激估计。不幸的是,当后验是高度非高斯的时,MAP估计会具有相对较大的平均误差。在这里,我们比较了几种马尔可夫链蒙特卡罗(MCMC)算法,这些算法可用于计算涉及后验期望(基于模型参数)的一般贝叶斯估计量。对于高斯先验,混合蒙特卡洛(HMC)算法的有效版本明显优于其他MCMC方法。另一方面,当先验分布具有尖锐的边缘和角落时,“命中并运行”算法的性能要优于其他MCMC方法。使用这些算法,我们表明对于后一类先验,后验均值估计的平均误差可能比MAP低得多,而对于高斯先验,这两个估计器的效率大致相等。我们还解决了MCMC方法在提取后验分布的非边际属性中的应用。例如,通过使用MCMC计算刺激和响应之间的相互信息,我们在各种模型参数中验证了高斯先验在此数量上计算有效的拉普拉斯近似的有效性。即使在大量观察到的神经种群的情况下,这也使得基于信息的直接基于模型的直接计算变得容易,在这种情况下,基于对峰值序列进行分类的方法会失败。最后,我们考虑了GLM参数的不确定性对后验估计器的影响。

著录项

  • 来源
    《Neural computation》 |2011年第1期|p.46-96|共51页
  • 作者单位

    Department of Statistics and Center for Theoretical Neuroscience,Columbia University, New York, New York 10027, U.S.A.;

    Center for Perceptual Systems, University of Texas at Austin, Austin, TX 78751, U.S.A.;

    Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, New York 10027, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号