首页> 外文期刊>Neural computation >Simple Deterministically Constructed Cycle Reservoirs with Regular Jumps
【24h】

Simple Deterministically Constructed Cycle Reservoirs with Regular Jumps

机译:具有确定跳跃性的简单确定性构造的周期储层

获取原文
获取原文并翻译 | 示例

摘要

A new class of state-space models, reservoir models, with a fixed state transition structure (the "reservoir") and an adaptable readout from the state space, has recently emerged as a way for time series processing and modeling. Echo state network (ESN) is one of the simplest, yet powerful, reservoir models. ESN models are generally constructed in a randomized manner. In our previous study (Rodan & Tino, 2011), we showed that a very simple, cyclic, deterministically generated reservoir can yield performance competitive with standard ESN. In this contribution, we extend our previous study in three aspects. First, we introduce a novel simple deterministic reservoir model, cycle reservoir with jumps (CRJ), with highly constrained weight values, that has superior performance to standard ESN on a variety of temporal tasks of different origin and characteristics. Second, we elaborate on the possible link between reservoir characterizations, such as eigenvalue distribution of the reservoir matrix or pseudo-Lyapunov exponent of the input-driven reservoir dynamics, and the model performance. It has been suggested that a uniform coverage of the unit disk by such eigenvalues can lead to superior model performance. We show that despite highly constrained eigenvalue distribution, CRJ consistently outperforms ESN (which has much more uniform eigenvalue coverage of the unit disk). Also, unlike in the case of ESN, pseudo-Lyapunov exponents of the selected optimal CRJ models are consistently negative. Third, we present a new framework for determining the short-term memory capacity of linear reservoir models to a high degree of precision. Using the framework, we study the effect of shortcut connections in the CRJ reservoir topology on its memory capacity.
机译:最近出现了一种新型的状态空间模型,即储层模型,具有固定的状态转换结构(“储层”)和对状态空间的适应性读数,作为时间序列处理和建模的一种方式。回声状态网络(ESN)是最简单但功能强大的储层模型之一。 ESN模型通常以随机方式构建。在我们之前的研究中(Rodan&Tino,2011),我们表明,非常简单,周期性,确定性生成的储层可以产生与标准ESN相当的性能。在此贡献中,我们从三个方面扩展了我们先前的研究。首先,我们介绍一种新颖的简单确定性储层模型,即具有高度约束的权重值的具有跳跃的循环储层(CRJ),在不同来源和特征的各种时间任务上,其性能均优于标准ESN。其次,我们阐述了储层特征之间的可能联系,例如储层矩阵的特征值分布或输入驱动型储层动力学的伪Lyapunov指数,以及模型性能。已经提出,这种特征值对单位圆盘的均匀覆盖可以导致优异的模型性能。我们表明,尽管特征值分布受到很大限制,CRJ始终优于ESN(ESN具有更均匀的单位磁盘特征值覆盖率)。同样,与ESN不同,所选最优CRJ模型的伪Lyapunov指数始终为负。第三,我们提出了一个新的框架,可以高度精确地确定线性储层模型的短期存储能力。使用该框架,我们研究了CRJ储层拓扑中的快捷连接对其存储容量的影响。

著录项

  • 来源
    《Neural computation》 |2012年第7期|p.1822-1852|共31页
  • 作者

    Ali Rodan; Peter Tino;

  • 作者单位

    School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.;

    School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号