首页> 外文期刊>Neural computation >A Proof of Convergence of the Concave-Convex Procedure Using Zangwill's Theory
【24h】

A Proof of Convergence of the Concave-Convex Procedure Using Zangwill's Theory

机译:利用Zangwill理论证明凹凸过程的收敛性

获取原文
获取原文并翻译 | 示例

摘要

The concave-convex procedure (CCCP) is an iterative algorithm that solves d.c. (difference of convex functions) programs as a sequence of convex programs. In machine learning, CCCP is extensively used in many learning algorithms, including sparse support vector machines (SVMs), transductive SVMs, and sparse principal component analysis. Though CCCP is widely used in many applications, its convergence behavior has not gotten a lot of specific attention. Yuille and Rangarajan analyzed its convergence in their original paper; however, we believe the analysis is not complete. The convergence of CCCP can be derived from the convergence of the d.c. algorithm (DCA), proposed in the global optimization literature to solve general d.c. programs, whose proof relies on d.c. duality. In this note, we follow a different reasoning and show how Zangwill's global convergence theory of iterative algorithms provides a natural framework to prove the convergence of CCCP. This underlines Zangwill's theory as a powerful and general framework to deal with the convergence issues of iterative algorithms, after also being used to prove the convergence of algorithms like expectation-maximization and generalized alternating minimization. In this note, we provide a rigorous analysis of the convergence of CCCP by addressing two questions: When does CCCP find a local minimum or a stationary point of the d.c. program under consideration? and when does the sequence generated by CCCP converge? We also present an open problem on the issue of local convergence of CCCP.
机译:凹凸过程(CCCP)是求解dc的迭代算法。 (凸函数的差)作为一系列凸程序进行编程。在机器学习中,CCCP被广泛用于许多学习算法中,包括稀疏支持向量机(SVM),转导SVM和稀疏主成分分析。尽管CCCP在许多应用中得到了广泛的应用,但是它的收敛行为并没有引起人们的特别关注。 Yuille和Rangarajan在他们的原始论文中分析了它的收敛性。但是,我们认为分析还不完整。 CCCP的收敛可以从dc的收敛中得出。算法(DCA),在全局优化文献中提出,用于解决一般dc。程序依赖于dc的程序二元性。在本说明中,我们遵循不同的推理,并说明了Zangwill的迭代算法的全局收敛理论如何为证明CCCP的收敛性提供自然的框架。这也强调了Zangwill的理论是一个强大且通用的框架,可以解决迭代算法的收敛性问题,还用于证明期望最大化和广义交替最小化等算法的收敛性。在本说明中,我们通过解决两个问题对CCCP的收敛性进行了严格的分析:CCCP何时找到dc的局部最小值或静止点。正在考虑程序? CCCP生成的序列何时收敛?我们还提出了关于CCCP的局部收敛问题的开放性问题。

著录项

  • 来源
    《Neural computation》 |2012年第6期|p.1391-1407|共17页
  • 作者单位

    Gatsby Unit, University College London, London WC1N 3AR, U.K;

    Department of Electrical and Computer Engineering, University of California,San Diego, La Jolla, CA 92093-0407, U.S.A;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号