首页> 外文期刊>Neural computation >Design and Analysis of Closed-Loop Decoder Adaptation Algorithms for Brain-Machine Interfaces
【24h】

Design and Analysis of Closed-Loop Decoder Adaptation Algorithms for Brain-Machine Interfaces

机译:人机界面闭环解码器自适应算法的设计与分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Closed-loop decoder adaptation (CLDA) is an emerging paradigm for achieving rapid performance improvements in online brain-machine interface (BMI) operation. Designing an effective CLDA algorithm requires making multiple important decisions, including choosing the timescale of adaptation, selecting which decoder parameters to adapt, crafting the corresponding update rules, and designing CLDA parameters. These design choices, combined with the specific settings of CLDA parameters, will directly affect the algorithm's ability to make decoder parameters converge to values that optimize performance. In this article, we present a general framework for the design and analysis of CLDA algorithms and support our results with experimental data of two monkeys performing a BMI task. First, we analyze and compare existing CLDA algorithms to highlight the importance of four critical design elements: the adaptation timescale, selective parameter adaptation, smooth decoder updates, and intuitive CLDA parameters. Second, we introduce mathematical convergence analysis using measures such as mean-squared error and KL divergence as a useful paradigm for evaluating the convergence properties of a prototype CLDA algorithm before experimental testing. By applying these measures to an existing CLDA algorithm, we demonstrate that our convergence analysis is an effective analytical tool that can ultimately inform and improve the design of CLDA algorithms.
机译:闭环解码器适配(CLDA)是一种新兴的范例,可实现在线脑机接口(BMI)操作中快速的性能改进。设计有效的CLDA算法需要做出多个重要决定,包括选择适配的时间尺度,选择要适配的解码器参数,制定相应的更新规则以及设计CLDA参数。这些设计选择与CLDA参数的特定设置相结合,将直接影响算法使解码器参数收敛到优化性能值的能力。在本文中,我们为CLDA算法的设计和分析提供了一个通用框架,并用两只执行BMI任务的猴子的实验数据来支持我们的结果。首先,我们分析和比较现有的CLDA算法,以突出四个关键设计元素的重要性:自适应时标,选择性参数自适应,平滑的解码器更新和直观的CLDA参数。其次,我们介绍了使用诸如均方误差和KL散度等度量的数学收敛性分析,作为在实验测试之前评估原型CLDA算法的收敛性的有用范例。通过将这些措施应用于现有的CLDA算法,我们证明了我们的收敛分析是一种有效的分析工具,可以最终指导和改进CLDA算法的设计。

著录项

  • 来源
    《Neural computation》 |2013年第7期|1693-1731|共39页
  • 作者单位

    Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, U.S.A;

    UC Berkeley-UCSF Graduate Group in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, U.S.A;

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, U.S.A;

    Helen Wills Neuroscience Institute, and Department of Electrical Engineering and Computer Sciences, UC Berkeley-UCSF Graduate Group in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, U.S.A;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号