首页> 外文期刊>Neural computation >Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces
【24h】

Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces

机译:具有递归最大似然算法的连续闭环解码器自适应可在脑机接口中快速获得性能

获取原文
获取原文并翻译 | 示例

摘要

Closed-loop decoder adaptation (CLDA) is an emerging paradigm for both improving and maintaining online performance in brain-machine interfaces (BMIs). The time required for initial decoder training and any subsequent decoder recalibrations could be potentially reduced by performing continuous adaptation, in which decoder parameters are updated at every time step during these procedures, rather than waiting to update the decoder at periodic intervals in a more batch-based process. Here, we present recursive maximum likelihood (RML), a CLDA algorithm that performs continuous adaptation of a Kalman filter decoder's parameters. We demonstrate that RML possesses a variety of useful properties and practical algorithmic advantages. First, we show how RML leverages the accuracy of updates based on a batch of data while still adapting parameters on every time step. Second, we illustrate how the RML algorithm is parameterized by a single, intuitive half-life parameter that can be used to adjust the rate of adaptation in real time. Third, we show how even when the number of neural features is very large, RML's memory-efficient recursive update rules can be reformulated to also be computationally fast so that continuous adaptation is still feasible. To test the algorithm in closed-loop experiments, we trained three macaque monkeys to perform a center-out reaching task by using either spiking activity or local field potentials to control a 2D computer cursor. RML achieved higher levels of performance more rapidly in comparison to a previous CLDA algorithm that adapts parameters on a more intermediate timescale. Overall, our results indicate that RML is an effective CLDA algorithm for achieving rapid performance acquisition using continuous adaptation.
机译:闭环解码器适配(CLDA)是一种新兴的范例,可用于改善和维持人机界面(BMI)中的在线性能。初始解码器训练和任何后续解码器重新校准所需的时间可通过执行连续调整来减少,其中在这些过程中的每个时间步都更新解码器参数,而不是等待以更批量的方式定期更新解码器,基础的过程。在这里,我们介绍了递归最大似然(RML),一种CLDA算法,可对卡尔曼滤波器解码器的参数进行连续调整。我们证明RML具有各种有用的属性和实用的算法优势。首先,我们展示RML如何基于一批数据利用更新的准确性,同时仍在每个时间步调整参数。其次,我们说明了如何通过单个直观的半衰期参数对RML算法进行参数化,该参数可用于实时调整自适应率。第三,我们展示了即使在神经特征数量很大的情况下,RML的内存有效的递归更新规则也可以重新构造为计算速度也很快,从而连续自适应仍然可行。为了在闭环实验中测试该算法,我们训练了三只猕猴,通过使用尖峰活动或局部场电势来控制2D计算机光标,以执行从中心向外伸出的任务。与以前的CLDA算法相比,RML更快速地实现了更高级别的性能,该算法在更中间的时间尺度上适应了参数。总体而言,我们的结果表明RML是一种通过连续自适应来实现快速性能获取的有效CLDA算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号