首页> 外文期刊>Neural computation >Solving the Distal Reward Problem with Rare Correlations
【24h】

Solving the Distal Reward Problem with Rare Correlations

机译:用稀有关联度解决远期奖励问题

获取原文
获取原文并翻译 | 示例

摘要

In the course of trial-and-error learning, the results of actions, manifested as rewards or punishments, occur often seconds after the actions that caused them. How can a reward be associated with an earlier action when the neural activity that caused that action is no longer present in the network? This problem is referred to as the distal reward problem. A recent computational study proposes a solution using modulated plasticity with spiking neurons and argues that precise firing patterns in the millisecond range are essential for such a solution. In contrast, the study reported in this letter shows that it is the rarity of correlating neural activity, and not the spike timing, that allows the network to solve the distal reward problem. In this study, rare correlations are detected in a standard rate-based computational model by means of a threshold-augmented Hebbian rule. The novel modulated plasticity rule allows a randomly connected network to learn in classical and instrumental conditioning scenarios with delayed rewards. The rarity of correlations is shown to be a pivotal factor in the learning and in handling various delays of the reward. This study additionally suggests the hypothesis that short-term synaptic plasticity may implement eligibility traces and thereby serve as a selection mechanism in promoting candidate synapses for long-term storage.
机译:在反复试验的学习过程中,表现为奖励或惩罚的行动结果往往会在导致行动的几秒钟后出现。当网络中不再存在导致该动作的神经活动时,奖励如何与较早的动作相关联?该问题称为远端奖励问题。最近的一项计算研究提出了一种使用带有尖峰神经元的可调制可塑性的解决方案,并指出毫秒级范围内的精确点火模式对于这种解决方案至关重要。相比之下,这封信中报道的研究表明,使神经网络解决末梢奖赏问题的原因是,与神经活动相关的稀有性而不是峰值时间。在这项研究中,通过基于阈值的Hebbian规则在基于比率的标准计算模型中检测到了罕见的相关性。新颖的调制可塑性规则允许随机连接的网络在延迟奖励的经典和器乐环境中学习。相关性的稀疏性是学习和处理各种奖励延迟的关键因素。这项研究还提出了这样的假设,即短期突触可塑性可能会实现合格性的痕迹,从而成为促进候选突触长期存储的选择机制。

著录项

  • 来源
    《Neural computation》 |2013年第4期|940-978|共39页
  • 作者单位

    Research Institute for Cognition and Robotics and Faculty of Technology, Bielefeld University, Bielefeld 33615, Germany;

    Research Institute for Cognition and Robotics and Faculty of Technology, Bielefeld University, Bielefeld 33615, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号