首页> 外文期刊>Neural computation >Bayesian Feature Selection with Strongly Regularizing Priors Maps to the Ising Model
【24h】

Bayesian Feature Selection with Strongly Regularizing Priors Maps to the Ising Model

机译:具有强正则化先验映射的Ising模型的贝叶斯特征选择

获取原文
获取原文并翻译 | 示例

摘要

Identifying small subsets of features that are relevant for prediction and classification tasks is a central problem in machine learning and statistics. The feature selection task is especially important, and computationally difficult, for modern data sets where the number of features can be comparable to or even exceed the number of samples. Here, we show that feature selection with Bayesian inference takes a universal form and reduces to calculating the magnetizations of an Ising model under some mild conditions. Our results exploit the observation that the evidence takes a universal form for strongly regularizing priors—priors that have a large effect on the posterior probability even in the infinite data limit. We derive explicit expressions for feature selection for generalized linear models, a large class of statistical techniques that includes linear and logistic regression. We illustrate the power of our approach by analyzing feature selection in a logistic regression-based classifier trained to distinguish between the letters B and D in the notMNIST data set.
机译:识别与预测和分类任务相关的特征的小子集是机器学习和统计中的核心问题。对于特征数量可以与甚至超过样本数量的现代数据集而言,特征选择任务尤其重要,并且计算难度很大。在这里,我们证明了利用贝叶斯推理进行特征选择时采用的是通用形式,并且简化为在某些温和条件下计算Ising模型的磁化强度。我们的结果利用了以下观察结果:证据采用通用形式强力规范先验,即使在无限数据限制下,先验对后验概率也有很大影响。我们导出用于广义线性模型的特征选择的显式表达式,广义线性模型是一类包括线性回归和逻辑回归的统计技术。我们通过在基于logistic回归的分类器中分析特征选择来说明我们的方法的力量,该分类器经过训练可以区分notMNIST数据集中的字母B和D。

著录项

  • 来源
    《Neural computation》 |2015年第11期|2411-2422|共12页
  • 作者单位

    Department of Physics, Boston University, Boston, MA 02215, U.S.A. charleskennethfisher@gmail.com;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号