首页> 外文期刊>Neural computation >Learning Simpler Language Models with the Differential State Framework
【24h】

Learning Simpler Language Models with the Differential State Framework

机译:使用差分状态框架学习更简单的语言模型

获取原文
获取原文并翻译 | 示例

摘要

Learning useful information across long time lags is a critical and difficultrnproblem for temporal neural models in tasks such as language modeling.rnExisting architectures that address the issue are often complex andrncostly to train. The differential state framework (DSF) is a simple andrnhigh-performing design that unifies previously introduced gated neuralrnmodels. DSF models maintain longer-term memory by learning to interpolaternbetween a fast-changing data-driven representation and a slowlyrnchanging, implicitly stable state.Within theDSF framework, a new architecturernis presented, the delta-RNN. This model requires hardly any morernparameters than a classical, simple recurrent network. In language modelingrnat the word and character levels, the delta-RNN outperforms popularrncomplex architectures, such as the long short-term memory (LSTM)rnand the gated recurrent unit (GRU), and, when regularized, performsrncomparably to several state-of-the-art baselines. At the subword level,rnthe delta-RNN’s performance is comparable to that of complex gatedrnarchitectures.
机译:对于诸如语言建模之类的任务中的时态神经模型,跨长时间滞后学习有用的信息是一个关键且困难的问题。解决该问题的现有体系结构通常很复杂且训练成本很高。微分状态框架(DSF)是一种简单且高性能的设计,它统一了先前引入的门控神经模型。 DSF模型通过学习在快速变化的数据驱动表示和缓慢变化的隐式稳定状态之间进行插值来维持长期记忆。在DSF框架中,提出了一种新的体系结构delta-RNN。与传统的简单循环网络相比,该模型几乎不需要任何其他参数。在单词和字符级别的语言建模中,delta-RNN优于流行的复杂体系结构,例如长短期记忆(LSTM)和门控递归单元(GRU),并且在进行正规化后,其性能可与几种状态保持一致艺术基准。在子词级别,delta-RNN的性能与复杂的门控体系结构相当。

著录项

  • 来源
    《Neural computation》 |2017年第12期|3327-3352|共26页
  • 作者单位

    College of Information Sciences and Technology, Pennsylvania State University,State College, PA 16802, U.S.A.;

    Facebook, New York, NY 10003, U.S.A.;

    College of Information Sciences and Technology, Pennsylvania State University,State College, PA 16802, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号