首页> 外文期刊>Neural computation >Robust Averaging of Covariances for EEG Recordings Classification in Motor Imagery Brain-Computer Interfaces
【24h】

Robust Averaging of Covariances for EEG Recordings Classification in Motor Imagery Brain-Computer Interfaces

机译:运动图像脑机接口脑电图记录分类的协方差的稳健平均。

获取原文
获取原文并翻译 | 示例

摘要

The estimation of covariance matrices is of prime importance to analyze the distribution of multivariate signals. In motor imagery–based braincomputer interfaces (MI-BCI), covariance matrices play a central role in the extraction of features from recorded electroencephalograms (EEGs); therefore, correctly estimating covariance is crucial for EEG classification. This letter discusses algorithms to average sample covariance matrices (SCMs) for the selection of the referencematrix in tangent spacemapping (TSM)–based MI-BCI. Tangent space mapping is a powerful method of feature extraction and strongly depends on the selection of a reference covariance matrix. In general, the observed signals may include outliers; therefore, taking the geometric mean of SCMs as the reference matrix may not be the best choice. In order to deal with the effects of outliers, robust estimators have to be used. In particular, we discuss and test the use of geometric medians and trimmed averages (defined on the basis of several metrics) as robust estimators. The main idea behind trimmed averages is to eliminate data that exhibit the largest distance from the average covariance calculated on thebasis of all availabledata. The results of the experiments show that while the geometric medians show little differences from conventional methods in terms of classification accuracy in the classification of electroencephalographic recordings, the trimmed averages show significant improvement for all subjects.
机译:协方差矩阵的估计对于分析多元信号的分布至关重要。在基于运动图像的脑机接口(MI-BCI)中,协方差矩阵在从记录的脑电图(EEG)提取特征中起着核心作用。因此,正确估计协方差对于脑电分类至关重要。这封信讨论了平均样本协方差矩阵(SCM)的算法,用于在基于切线空间映射(TSM)的MI-BCI中选择参考矩阵。切线空间映射是一种强大的特征提取方法,在很大程度上取决于参考协方差矩阵的选择。通常,观察到的信号可能包括离群值;因此,以SCM的几何平均值作为参考矩阵可能不是最佳选择。为了处理离群值的影响,必须使用鲁棒的估计器。特别是,我们讨论并测试了几何中位数和修整平均值(基于多个度量标准定义)作为稳健估计量的使用。修整平均值背后的主要思想是消除与所有可用数据基础上计算出的平均协方差最大距离的数据。实验结果表明,尽管在脑电图记录分类中,几何中位数在分类精度方面与常规方法几乎没有差异,但修整后的平均值对所有受试者均具有显着改善。

著录项

  • 来源
    《Neural computation》 |2017年第6期|1631-1666|共36页
  • 作者单位

    Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;

    School of Information and Automation Engineering, Università Politecnica delle Marche, Ancona 1-60131, Italy;

    Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo 184- 8588, and RIKEN Brain Institute,Saitama 351-0198, Japan;

    School of Information and Automation Engineering, Università Politecnica delle Marche, Ancona 1-60131, Italy, and Dipartimento di Ingegneria dell’Informazione,Università Politecnica delle Marche, 1-60131, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号