首页> 外文期刊>Neural computation >Unifying Adversarial Training Algorithms with Data Gradient Regularization
【24h】

Unifying Adversarial Training Algorithms with Data Gradient Regularization

机译:通过数据梯度正则化统一对抗训练算法

获取原文
获取原文并翻译 | 示例

摘要

Many previous proposals for adversarial training of deep neural nets have included directly modifying the gradient, training on a mix of original and adversarial examples, using contractive penalties, and approximately optimizing constrained adversarial objective functions. In this article, we show that these proposals are actually all instances of optimizing a general, regularized objective we call DataGrad. Our proposed DataGrad framework, which can be viewed as a deep extension of the layerwise contractive autoencoder penalty, cleanly simplifies prior work and easily allows extensions such as adversarial training with multitask cues. In our experiments, we find that the deep gradient regularization of DataGrad (which also has L1 and L2 flavors of regularization) outperforms alternative forms of regularization, including classical L1, L2, and multitask, on both the original data set and adversarial sets. Furthermore, we find that combining multitask optimization with DataGrad adversarial training results in the most robust performance.
机译:先前关于深度神经网络对抗训练的许多建议都包括直接修改梯度,结合原始和对抗示例进行训练,使用收缩惩罚以及近似优化受约束的对抗目标函数。在本文中,我们证明了这些建议实际上是优化我们称为DataGrad的常规常规目标的所有实例。我们提出的DataGrad框架可以看作是分层收缩式自动编码器代价的深度扩展,可以完全简化先前的工作,并可以轻松地扩展诸如具有多任务提示的对抗性训练。在我们的实验中,我们发现DataGrad的深梯度正则化(它也具有L1和L2的正则化形式)在原始数据集和对抗集上都优于其他形式的正则化形式,包括经典L1,L2和多任务。此外,我们发现将多任务优化与DataGrad对抗训练相结合可获得最强大的性能。

著录项

  • 来源
    《Neural computation》 |2017年第4期|867-887|共21页
  • 作者单位

    Pennsylvania State University, University Park, PA 16802, U.S.A. agol09@ist.psu.edu;

    Pennsylvania State University, University Park, PA 16802, U.S.A. dkifer@cse.psu.edu;

    Pennsylvania State University, University Park, PA 16802, U.S.A. giles@ist.psu.edu;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号