首页> 外文期刊>Neural computation >Cross-Domain Metric andMultiple Kernel Learning Based on Information Theory
【24h】

Cross-Domain Metric andMultiple Kernel Learning Based on Information Theory

机译:基于信息论的跨域度量和多核学习

获取原文
获取原文并翻译 | 示例

摘要

Learning an appropriate distance metric plays a substantial role in thernsuccess of many learning machines. Conventional metric learning algorithmsrnhave limited utility when the training and test samples are drawnrnfrom related but different domains (i.e., source domain and target domain).rnIn this letter, we propose two novel metric learning algorithmsrnfor domain adaptation in an information-theoretic setting, allowing forrndiscriminating power transfer and standard learning machine propagationrnacross two domains. In the first one, a cross-domain Mahalanobisrndistance is learned by combining three goals: reducing the distributionrndifference between different domains, preserving the geometry of targetrndomain data, and aligning the geometry of source domain data withrnlabel information. Furthermore, we devote our efforts to solving complexrndomain adaptation problems and go beyond linear cross-domain metricrnlearning by extending the first method to a multiple kernel learningrnframework. Aconvex combination of multiple kernels and a linear transformationrnare adaptively learned in a single optimization, which greatlyrnbenefits the exploration of prior knowledge and the description of datarncharacteristics. Comprehensive experiments in three real-world applicationsrn(face recognition, text classification, and object categorization) verifyrnthat the proposed methods outperform state-of-the-art metric learningrnand domain adaptation methods.
机译:学习合适的距离度量在许多学习机的成功中起着重要作用。当从相关但不同的域(即源域和目标域)中抽取训练样本和测试样本时,常规度量学习算法的实用性有限。在这封信中,我们提出了两种新颖的度量学习算法,用于信息理论环境中的域自适应,从而可以区分电力传输和标准学习机传播跨越两个领域。在第一个中,通过组合三个目标来学习跨域马氏距离:减小不同域之间的分布差异,保留目标域数据的几何形状以及将源域数据的几何形状与标签信息对齐。此外,我们致力于解决复杂的域自适应问题,并通过将第一种方法扩展到多核学习框架,超越了线性跨域度量学习。在单个优化中自适应地学习了多个核的凸组合和线性变换,这极大地有益于对先验知识的探索和对数据特性的描述。在三个真实世界的应用程序(人脸识别,文本分类和对象分类)中进行的综合实验证明,所提出的方法优于最新的度量学习方法和领域自适应方法。

著录项

  • 来源
    《Neural computation》 |2018年第3期|820-855|共36页
  • 作者单位

    Institute of Software, Chinese Academy of Sciences, Beijing 100190, China;

    360 Search Lab, Qihoo, Beijing 100016, China;

    Institute of Software, Chinese Academy of Sciences, Beijing 100190, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号