首页> 外文期刊>Neural computation >Why Do Similarity Matching Objectives Lead to Hebbian/Anti-Hebbian Networks?
【24h】

Why Do Similarity Matching Objectives Lead to Hebbian/Anti-Hebbian Networks?

机译:为什么相似性匹配目标会导致Hebbian / Anti-Hebbian网络?

获取原文
获取原文并翻译 | 示例

摘要

Modeling self-organization of neural networks for unsupervised learning using Hebbian and anti-Hebbian plasticity has a long history in neuroscience. Yet derivations of single-layer networks with such local learning rules from principled optimization objectives became possible only recently, with the introduction of similarity matching objectives. What explains the success of similarity matching objectives in deriving neural networks with local learning rules? Here, using dimensionality reduction as an example, we introduce several variable substitutions that illuminate the success of similarity matching. We show that the full network objective may be optimized separately for each synapse using local learning rules in both the offline and online settings. We formalize the long-standing intuition of the rivalry between Hebbian and anti-Hebbian rules by formulating a min-max optimization problem.We introduce a novel dimensionality reduction objective using fractional matrix exponents. To illustrate the generality of our approach, we apply it to a novel formulation of dimensionality reduction combined with whitening.We confirm numerically that the networkswith learning rules derived from principled objectives perform better than those with heuristic learning rules.
机译:使用Hebbian和反Hebbian可塑性对神经网络的自组织进行无监督学习建模在神经科学领域有着悠久的历史。然而,直到最近,通过引入相似性匹配目标,才有可能从原则上的优化目标中衍生出具有此类本地学习规则的单层网络。是什么解释了在使用局部学习规则导出神经网络时相似性匹配目标的成功?在这里,以降维为例,我们介绍了几种变量替换,它们说明了相似性匹配的成功之处。我们显示,可以使用离线和在线设置中的本地学习规则针对每个突触分别优化整个网络目标。通过制定最小-最大优化问题,我们正式确定了Hebbian和反Hebbian规则之间长期存在的竞争直觉。我们使用分数矩阵指数引入了一种新的降维目标。为了说明我们方法的通用性,我们将其应用于降维与美白相结合的新颖公式化。我们在数字上确认具有从原则性目标派生的学习规则的网络比具有启发式学习规则的网络表现更好。

著录项

  • 来源
    《Neural computation》 |2018年第1期|84-124|共41页
  • 作者单位

    Center for Computational Biology, Flatiron Institute, New York, NY 10010, U.S.A.;

    Center for Computational Biology, Flatiron Institute, New York, NY 10010, U.S.A., Physics and Astronomy Department, Rutgers University, New Brunswick, NJ 08901, U.S.A.;

    Center for Computational Biology, Flatiron Institute, New York, NY 10010, U.S.A., NYU Langone Medical Center, New York 10016, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号