首页> 外文期刊>Neural computation >Mechanism-Based and Input-Output Modeling of the Key Neuronal Connections and Signal Transformations in the CA3-CA1 Regions of the Hippocampus
【24h】

Mechanism-Based and Input-Output Modeling of the Key Neuronal Connections and Signal Transformations in the CA3-CA1 Regions of the Hippocampus

机译:海马CA3-CA1区关键神经元连接和信号转换的基于机制和输入-输出建模

获取原文
获取原文并翻译 | 示例

摘要

This letter examines the results of input-output (nonparametric) modeling based on the analysis of data generated by a mechanism-based (parametric) model of CA3-CA1 neuronal connections in the hippocampus. The motivation is to obtain biological insight into the interpretation of such input-output (Volterra-equivalent) models estimated from synthetic data. The insights obtained may be subsequently used to interpretat input-output models extracted from actual experimental data. Specifically, we found that a simplified parametric model may serve as a useful tool to study the signal transformations in the hippocampal CA3-CA1 regions. Input-output modeling of model-based synthetic data show that GABAergic interneurons are responsible for regulating neuronal excitation, controlling the precision of spike timing, and maintaining network oscillations, in a manner consistent with previous studies. The input-output model obtained from real data exhibits intriguing similarities with its synthetic-data counterpart, demonstrating the importance of a dynamic resonance in the system/model response around 2 Hz to 3 Hz. Using the input-output model from real data as a guide, we may be able to amend the parametric model by incorporating more mechanisms in order to yield better-matching input-output model. The approach we present can also be applied to the study of other neural systems and pathways.
机译:这封信基于对海马CA3-CA1神经元连接的基于机制的(参数)模型生成的数据的分析,检查了输入-输出(非参数)建模的结果。这样做的动机是获得生物学上的洞察力,以解释从合成数据估计的这种输入-输出(等效于Volterra)模型。获得的见解可随后用于解释从实际实验数据中提取的输入-输出模型。具体来说,我们发现简化的参数模型可以作为研究海马CA3-CA1区信号转换的有用工具。基于模型的合成数据的输入输出模型表明,GABA能神经元负责调节神经元兴奋,控制尖峰定时的精度并保持网络振荡,其方式与以前的研究一致。从真实数据获得的输入输出模型与其合成数据对应物表现出令人着迷的相似性,这表明了动态共振在系统/模型响应中在2 Hz至3 Hz附近的重要性。使用来自实际数据的输入输出模型作为指南,我们可以通过合并更多机制来修改参数模型,以产生更匹配的输入输出模型。我们目前提出的方法还可以应用于其他神经系统和途径的研究。

著录项

  • 来源
    《Neural computation》 |2018年第1期|149-183|共35页
  • 作者单位

    Department of Biomedical Engineering and the Biomedical Simulations Resource Center at the University of Southern California, Los Angeles, CA, 90089, U.S.A.;

    Department of Biomedical Engineering and the Biomedical Simulations Resource Center at the University of Southern California, Los Angeles, CA, 90089, U.S.A.;

    Department of Biomedical Engineering and the Biomedical Simulations Resource Center at the University of Southern California, Los Angeles, CA, 90089, U.S.A.;

    Department of Physiology and Pharmacology, Wake Forest School of Medicine,Winston-Salem, NC, 27157, U.S.A.;

    Department of Physiology and Pharmacology, Wake Forest School of Medicine,Winston-Salem, NC, 27157, U.S.A.;

    Department of Biomedical Engineering and the Biomedical Simulations Resource Center at the University of Southern California, Los Angeles, CA, 90089, U.S.A.;

    Department of Biomedical Engineering and the Biomedical Simulations Resource Center at the University of Southern California, Los Angeles, CA, 90089, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号