首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >The Smallest Eigenvalue of the Generalized Laplacian Matrix, with Application to Network-Decentralized Estimation for Homogeneous Systems
【24h】

The Smallest Eigenvalue of the Generalized Laplacian Matrix, with Application to Network-Decentralized Estimation for Homogeneous Systems

机译:广义拉普拉斯矩阵的最小特征值,应用于均匀系统的网络分散估计

获取原文
获取原文并翻译 | 示例

摘要

The problem of synthesizing network-decentralized observers arises when several agents, corresponding to the nodes of a network, exchange information about local measurements to asymptotically estimate their own state. The network topology is unknown to the nodes, which can rely on information about their neighboring nodes only. For homogeneous systems, composed of identical agents, we show that a network-decentralized observer can be designed by starting from local observers (typically, optimal filters) and then adapting the gain to ensure overall stability. The smallest eigenvalue of the so-called generalized Laplacian matrix is crucial: stability is guaranteed if the gain is greater than the inverse of this eigenvalue, which is strictly positive if the graph is externally connected. To deal with uncertain topologies, we characterize the worst-case smallest eigenvalue of the generalized Laplacian matrix for externally connected graphs, and we prove that the worst-case graph is a chain. This general result provides a bound for the observer gain that ensures robustness of the network-decentralized observer even under arbitrary, possibly switching, configurations, and in the presence of noise.
机译:当几个代理(对应于网络的节点)交换有关本地测量的信息以渐近估计其自身状态时,就会出现合成网络分散的观察器的问题。节点未知网络拓扑,节点只能依赖于其相邻节点的信息。对于由相同代理组成的同构系统,我们表明可以通过从本地观察者(通常是最佳滤波器)开始,然后调整增益以确保总体稳定性来设计网络分散的观察者。所谓的广义拉普拉斯矩阵的最小特征值至关重要:如果增益大于该特征值的倒数,则可以确保稳定性;如果图形是外部连接的,则该特征值必须为正。为了处理不确定的拓扑,我们为外部连接的图表征了广义拉普拉斯矩阵的最坏情况下的最小特征值,并证明了最坏情况图是一个链。该一般结果为观察者增益提供了一个界限,即使在任意(可能是交换的)配置下以及存在噪声的情况下,也能确保网络分散的观察者的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号