首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Clustering Network Layers with the Strata Multilayer Stochastic Block Model
【24h】

Clustering Network Layers with the Strata Multilayer Stochastic Block Model

机译:使用Strata多层随机块模型对网络层进行聚类

获取原文
获取原文并翻译 | 示例

摘要

Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the “strata multilayer stochastic block model” (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called “strata”, which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project.
机译:多层网络是一种有用的数据结构,用于同时捕获一组节点之间的多种类型的关系。在这样的网络中,每个关系定义都产生一个层。虽然每一层都提供自己的信息集,但是可以共同利用跨层的社区结构来发现和量化节点之间的基础关系模式。为了从多层网络中简洁地提取信息,我们建议识别并组合具有有意义的社区结构相似性的层集。在本文中,我们描述了“分层多层随机块模型”(sMLSBM),它是多层群落结构的概率模型。该模型的主要扩展是存在称为“层”的层组,这些层被定义为使得给定层中的所有层均具有由公共随机块模型(SBM)描述的群落结构。也就是说,层中的层表现出相似的节点到社区分配和SBM概率参数。使sMLSBM适应多层网络可提供联合群集,从而产生节点到社区和层到层的分配,在推理过程中相互协作。我们描述了一种用于将各层分为合适的层的算法,以及一种用于估算每个层的SBM参数的推理技术。我们演示了使用合成网络和从人类微生物组项目中收集的数据推断出的多层网络的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号