首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Model-Free Event-Triggered Optimal Consensus Control of Multiple Euler-Lagrange Systems via Reinforcement Learning
【24h】

Model-Free Event-Triggered Optimal Consensus Control of Multiple Euler-Lagrange Systems via Reinforcement Learning

机译:无模型事件触发多个Euler-Lagrange系统的最佳共识控制,通过加固学习

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a model-free approach to solve the event-triggered optimal consensus of multiple Euler-Lagrange systems (MELSs) via reinforcement learning (RL). Firstly, an augmented system is constructed by defining a pre-compensator to circumvent the dependence on system dynamics. Secondly, the Hamilton-Jacobi-Bellman (HJB) equations are applied to the deduction of the model-free event-triggered optimal controller. Thirdly, we present a policy iteration (PI) algorithm derived from RL, which converges to the optimal policy. Then, the value function of each agent is represented through a neural network to realize the PI algorithm. Moreover, the gradient descent method is used to update the neural network only at a series of discrete event-triggered instants. The specific form of the event-triggered condition is then proposed, and it is guaranteed that the closed-loop augmented system under the event-triggered mechanism is uniformly ultimately bounded (UUB). Meanwhile, the Zeno behavior is also eliminated. Finally, the validity of this approach is verified by a simulation example.
机译:本文开发了一种无模型方法来解决多个Euler-Lagrange Systems(MELS)的事件触发的最佳共识(RL)。首先,通过定义预补偿器来规避对系统动态的依赖性来构建增强系统。其次,汉密尔顿 - 雅各比 - 贝尔曼(HJB)方程被应用于扣除无模型事件触发的最佳控制器。第三,我们介绍了来自RL的策略迭代(PI)算法,该算法会聚到最佳策略。然后,通过神经网络表示每个代理的值函数以实现PI算法。此外,梯度下降方法用于仅在一系列离散的事件触发时刻更新神经网络。然后提出了事件触发条件的具体形式,并保证在事件触发机制下的闭环增强系统均匀最终界限(UB)。同时,ZENO行为也被淘汰。最后,通过模拟示例验证了这种方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号