首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Modeling and Performance Assessment of Dynamic Rate Adaptation for M2M Communications
【24h】

Modeling and Performance Assessment of Dynamic Rate Adaptation for M2M Communications

机译:M2M通信动态速率适配的建模和性能评估

获取原文
获取原文并翻译 | 示例

摘要

With the advance of Internet of Things and the support of a diverse array of smart-world applications, the number of Machine-to-Machine (M2M) devices has continued to grow at an accelerated rate. This significant and unchecked increase poses enormous challenges to both M2M infrastructure and the coexistence of M2M applications. In this paper, we model the traffic arrival patterns of time-driven, event-driven and loop-driven M2M applications, and propose a novel dynamic rate adaptation (DRA) scheme to obtain an optimized service rate distribution among a mixture of diverse M2M applications. DRA introduces real-time monitoring of M2M traffic arrival rate, building on which a service rate distribution between M2M applications can be incrementally adjusted moment to moment, through the use of the mean value theorem of integrals (MVTI) and generalized processor sharing (GPS). Via a combination of both theoretical analysis and extensive performance evaluation, we have validated the effectiveness of our proposed DRA scheme. Our experimental results demonstrate that DRA can significantly improve M2M communications performance with respect to throughput, delay, and energy consumption. In addition, we extend our proposed DRA scheme from the perspective of Device-to-Device (D2D) communications and further discuss the resilience of DRA.
机译:随着物联网的发展以及各种智能世界应用程序的支持,机器对机器(M2M)设备的数量继续以加速的速度增长。这一巨大且不受限制的增长给M2M基础架构和M2M应用程序的共存提出了巨大挑战。在本文中,我们对时间驱动,事件驱动和循环驱动的M2M应用程序的流量到达模式进行建模,并提出了一种新颖的动态速率自适应(DRA)方案,以在各种M2M应用程序混合之间获得优化的服务速率分布。 DRA引入了对M2M流量到达率的实时监控,在此基础上,可以通过使用积分均值定理(MVTI)和广义处理器共享(GPS)来逐步调整M2M应用程序之间的服务速率分布。 。通过理论分析和广泛的性能评估相结合,我们已经验证了我们提出的DRA方案的有效性。我们的实验结果表明,DRA可以在吞吐量,延迟和能耗方面显着提高M2M通信性能。此外,我们从设备到设备(D2D)通信的角度扩展了我们提出的DRA方案,并进一步讨论了DRA的弹性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号