首页> 外文期刊>Nature >Odd and even Kondo effects from emergent localization in quantum point contacts
【24h】

Odd and even Kondo effects from emergent localization in quantum point contacts

机译:量子点接触中出现的本地化导致的奇数甚至近藤效应

获取原文
获取原文并翻译 | 示例
       

摘要

A quantum point contact (QPC) is a basic nanometre-scale electronic device: a short and narrow transport channel between two electron reservoirs. In clean channels, electron transport is ballistic and the conductance is then quantized as a function of channel width with plateaux at integer multiples of 2e~2/h (where e is the electron charge and h is Planck's constant). This can be understood in a picture where the electron states are propagating waves, without the need to account for electron-electron interactions. Quantized conductance could thus be the signature of ultimate control over nanoscale electron transport. However, even studies with the cleanest QPCs generically show significant anomalies in the quantized conductance traces, and there is consensus that these result from electron many-body effects. Despite extensive experimental and theoretical studies, understanding these anomalies is an open problem. Here we report that the many-body effects have their origin in one or more spontaneously localized states that emerge from Friedel oscillations in the electron charge density within the QPC channel. These localized states will have electron spins associated with them, and the Kondo effect-related to electron transport through such localized electron spins-contributes to the formation of the many-body state. We present evidence for such localization, with Kondo effects of odd or even character, directly reflecting the parity of the number of localized states; the evidence is obtained from experiments with length-tunable QPCs that show a periodic modulation of the many-body properties with Kondo signatures that alternate between odd and even Kondo effects. Our results are of importance for assessing the role of QPCs in more complex hybrid devices and for proposals for spintronic and quantum information applications. In addition, our results show that tunable QPCs offer a versatile platform for investigating many-body effects in nanoscale systems, with the ability to probe such physics at the level of a single site.
机译:量子点接触(QPC)是基本的纳米级电子设备:两个电子储库之间的短而窄的传输通道。在干净的通道中,电子的传输是弹道的,然后将电导率作为通道宽度的函数进行量化,其中平稳度是2e〜2 / h的整数倍(其中e是电子电荷,h是Planck常数)。可以在电子状态为传播波的图片中理解这一点,而无需考虑电子-电子相互作用。因此,量化的电导可能是最终控制纳米级电子传输的标志。但是,即使使用最干净的QPC进行的研究通常也显示出在量化的电导迹线中存在明显的异常,并且已经达成共识,这些异常源于电子多体效应。尽管进行了大量的实验和理论研究,但了解这些异常现象仍然是一个悬而未决的问题。在这里我们报告说,多体效应的起源是一种或多种自发局部状态,这些状态是由QPC通道内电子电荷密度的Friedel振荡产生的。这些局域态将具有与之相关的电子自旋,而与通过此类局域电子自旋的电子传输有关的近藤效应有助于形成多体态。我们提供了这种本地化的证据,具有奇偶性的近藤效应,直接反映了本地化国家数量的均等性;证据来自于长度可调QPC的实验,该实验显示了具有奇偶Kondo效应和偶数Kondo效应的Kondo签名的多体属性的周期性调制。我们的结果对于评估QPC在更复杂的混合设备中的作用以及对于自旋电子学和量子信息应用的建议非常重要。此外,我们的结果表明,可调谐QPC为研究纳米级系统中的多体效应提供了一个通用平台,并且能够在单个站点的水平上探测此类物理现象。

著录项

  • 来源
    《Nature》 |2013年第7465期|79-83|共5页
  • 作者单位

    Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands;

    Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;

    Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands;

    Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands;

    Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands;

    Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands;

    Angewandte Festkorperphysik, Ruhr-Universitat Bochum, D-44780 Bochum, Germany;

    Angewandte Festkorperphysik, Ruhr-Universitat Bochum, D-44780 Bochum, Germany;

    lnstituto de Ciencia de Materialesde Madrid (ICMM), Consejo Superior de Investigaciones Cientificas(CSIC), Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain;

    Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel,llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;

    Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:53:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号