首页> 外文期刊>Natural language engineering >Reading comprehension tests for computer-based understanding evaluation
【24h】

Reading comprehension tests for computer-based understanding evaluation

机译:阅读理解测试以进行基于计算机的理解评估

获取原文
获取原文并翻译 | 示例

摘要

Reading comprehension (RC) tests involve reading a short passage of text and answering a series of questions pertaining to that text. We present a methodology for evaluation of the application of modern natural language technologies to the task of responding to RC tests. Our work is based on ABCs (Abduction Based Comprehension system), an automated system for taking tests requiring short answer phrases as responses. A central goal of ABCs is to serve as a testbed for understanding the role that various linguistic components play in responding to reading comprehension questions. The heart of ABCs is an abductive inference engine that provides three key capabilities: (1) first-order logical representation of relations between entities and events in the text and rules to perform inference over such relations, (2) graceful degradation due to the inclusion of abduction in the reasoning engine, which avoids the brittleness that can be problematic in knowledge representation and reasoning systems and (3) system transparency such that the types of abductive inferences made over an entire corpus provide cues as to where the system is performing poorly and indications as to where existing knowledge is inaccurate or new knowledge is required. ABCs, with certain sub-components not yet automated, finds the correct answer phrase nearly 35 percent of the time using a strict evaluation metric and 45 percent of the time using a looser inexact metric on held out evaluation data. Performance varied for the different question types, ranging from over 50 percent on who questions to over 10 percent on what questions. We present analysis of the roles of individual components and analysis of the impact of various characteristics of the abductive proof procedure on overall system performance.
机译:阅读理解(RC)测试包括阅读一段简短的文本并回答与该文本有关的一系列问题。我们提出了一种方法,用于评估现代自然语言技术对响应RC测试的任务的应用。我们的工作基于ABC(基于绑架的理解系统),这是一种自动系统,用于接受需要简短回答短语作为响应的测试。 ABC的主要目标是作为一个测试平台,以理解各种语言成分在响应阅读理解问题中所起的作用。 ABC的核心是一个归纳推理引擎,它提供三个关键功能:(1)文本中实体与事件之间的关系的一阶逻辑表示以及对这种关系进行推理的规则;(2)由于包含而导致的适度降级推理引擎中的绑架,避免了在知识表示和推理系统中可能会出现问题的脆性;以及(3)系统透明性,这样,整个语料库上的绑架推理类型就可以提供有关系统运行状况不佳的线索,以及有关现有知识不准确或需要新知识的指示。具有某些子组件尚未实现自动化的ABC,使用严格的评估指标将近35%的时间找到正确的答案短语,使用对所保留的评估数据使用较宽松的不精确指标,则有45%的时间找到正确的答案短语。不同类型的问题的表现各不相同,从谁提问的问题超过50%,到什么问题的问题超过10%。我们介绍了单个组件的作用分析以及绑架证明程序的各种特征对整体系统性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号