首页> 外文期刊>NanoBioscience, IEEE Transactions on >Prediction of Essential Proteins Based on Overlapping Essential Modules
【24h】

Prediction of Essential Proteins Based on Overlapping Essential Modules

机译:基于重叠基本模块的必需蛋白预测

获取原文
获取原文并翻译 | 示例

摘要

Many computational methods have been proposed to identify essential proteins by using the topological features of interactome networks. However, the precision of essential protein discovery still needs to be improved. Researches show that majority of hubs (essential proteins) in the yeast interactome network are essential due to their involvement in essential complex biological modules and hubs can be classified into two categories: date hubs and party hubs. In this study, combining with gene expression profiles, we propose a new method to predict essential proteins based on overlapping essential modules, named POEM. In POEM, the original protein interactome network is partitioned into many overlapping essential modules. The frequencies and weighted degrees of proteins in these modules are employed to decide which categories does a protein belong to? The comparative results show that POEM outperforms the classical centrality measures: Degree Centrality (DC), Information Centrality (IC), Eigenvector Centrality (EC), Subgraph Centrality (SC), Betweenness Centrality (BC), Closeness Centrality (CC), Edge Clustering Coefficient Centrality (NC), and two newly proposed essential proteins prediction methods: PeC and CoEWC. Experimental results indicate that the precision of predicting essential proteins can be improved by considering the modularity of proteins and integrating gene expression profiles with network topological features.
机译:已经提出了许多计算方法来利用相互作用组网络的拓扑特征来鉴定必需蛋白。但是,仍然需要提高必需蛋白质发现的精度。研究表明,酵母相互作用组网络中的大多数集线器(必需蛋白)都是必不可少的,因为它们参与了必不可少的复杂生物模块,并且集线器可分为两类:日期集线器和聚会集线器。在这项研究中,结合基因表达谱,我们提出了一种基于重叠的基本模块来预测必需蛋白的新方法,称为POEM。在POEM中,原始的蛋白质相互作用组网络被划分为许多重叠的基本模块。这些模块中蛋白质的频率和加权程度可用来确定蛋白质属于哪个类别?比较结果表明,POEM优于传统的中心度度量:度中心度(DC),信息中心度(IC),特征向量中心度(EC),子图中心度(SC),中间度中心度(BC),紧密度中心度(CC),边缘聚类系数中心度(NC)和两种新提出的必需蛋白质预测方法:PeC和CoEWC。实验结果表明,通过考虑蛋白质的模块化并整合具有网络拓扑特征的基因表达谱,可以提高预测必需蛋白质的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号