首页> 外文期刊>Multimedia Tools and Applications >Improved fast compressive tracking for low-altitude flying target tracking
【24h】

Improved fast compressive tracking for low-altitude flying target tracking

机译:改进了低空飞行目标跟踪的快速压缩跟踪

获取原文
获取原文并翻译 | 示例

摘要

Effective and efficient low-altitude flying target tracking in the field of visual tracking is challenging due to factors such as background interference, a small target imaging area, scale changes, and in-plane/out-of-plane rotation. Fast compressive tracking is an effective algorithm that combines compressive sensing theory and the naive Bayes classifier to track targets in real-time. Since the target motion information is not used in the tracking process and a fixed learning rate is adopted, the target may be lost during tracking, especially when the background interference is considerable or when in-plane/out-of-plane rotation exists. To solve this problem, first, target motion information was introduced to reduce the search area for predicting the target position. Then, the confidence calculation was optimized by comprehensively considering the posterior probability of the candidate region and the positive sample membership value. Finally, the learning rate was dynamically adjusted according to the target velocity and optimized confidence. Experimental results verified that the proposed method could effectively improve the efficiency, accuracy, and robustness of target tracking.
机译:由于背景干扰,小目标成像区域,尺度变化以及面内/外平面旋转等因素,视野跟踪领域的有效和高效的低空飞行目标跟踪是具有挑战性的。快速压缩跟踪是一种有效的算法,它将压缩感测理论和天真贝叶斯分类器结合到实时跟踪目标。由于在跟踪过程中不使用目标运动信息并且采用固定学习速率,因此在跟踪期间可能丢失目标,特别是当背景干扰相当于或存在面内/外平面旋转时。为了解决这个问题,首先,引入了目标运动信息以减少用于预测目标位置的搜索区域。然后,通过综合考虑候选区域的后验概率和正样本隶属值来优化置信度计算。最后,根据目标速度和优化的置信度动态调整学习率。实验结果证实,所提出的方法可以有效提高目标跟踪的效率,准确性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号