首页> 外文期刊>Multimedia Tools and Applications >A heuristic SVM based pedestrian detection approach employing shape and texture descriptors
【24h】

A heuristic SVM based pedestrian detection approach employing shape and texture descriptors

机译:基于启发式SVM的行人检测方法,采用形状和纹理描述符

获取原文
获取原文并翻译 | 示例

摘要

Pedestrian detection is a vital issue in various computer vision applications such as smart security system, driverless car, smart traffic management system and so forth. However, the issue of low detection accuracy and high computational complexity still makes a prompt topic of research. In the current scenario, Histogram of Oriented Gradients (HOG) with linear Support Vector Machine (SVM) is considered to be the most discriminative detector and has been adopted in various advance systems. In this paper, a novel method for pedestrian detection is proposed with the objective of improving the detection accuracy, precision and other metrics values. The proposed approach combines Histogram of Significant Gradients (HSG) and Non Redundant Uniform Local Binary Pattern (NRULBP) to generate a competent descriptor to be used in our detection model. The proposed approach is used in conjunction with various classifiers and the linear SVM classifier is found to provide better metric values over others. Different datasets like INRIA, TUD-brussels-motion pairs and ETH are utilized for performing experiments and to obtain detection results. Experimental results show that the proposed descriptor outperforms HSG by 2.59%, 8.97%, 8.5% and NRULBP by 3.19%, 39.55%, 19.66% in terms of detection accuracy, precision and F1 score respectively.
机译:行人检测是各种计算机视觉应用中的重要问题,如智能安全系统,无人驾驶汽车,智能交通管理系统等。然而,低检测精度和高计算复杂性的问题仍然是一个提示的研究主题。在当前的情况下,具有线性支持向量机(SVM)的取向梯度(HOG)的直方图被认为是最辨别的检测器,并且已在各种提前系统中采用。在本文中,提出了一种新的行人检测方法,目的是提高检测精度,精度和其他度量值。所提出的方法组合了显着梯度(HSG)和非冗余均匀局部二进制模式(NRULBP)的直方图,以生成用于在我们的检测模型中使用的称职描述符。所提出的方法与各种分类器结合使用,并且发现线性SVM分类器以提供更好的标准值。不同的数据集如inria,tud-brussels-motion对和eth用于进行实验并获得检测结果。实验结果表明,所提出的描述符分别优于2.59%,8.97%,8.5%和Nrulbp分别以3.19%,39.55%,19.66%分别优于检测精度,精度和F1分数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号