首页> 外文期刊>Multimedia, IEEE Transactions on >Structure-Preserving Image Super-Resolution via Contextualized Multitask Learning
【24h】

Structure-Preserving Image Super-Resolution via Contextualized Multitask Learning

机译:通过上下文多任务学习保持结构的图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Single-image super-resolution (SR), which refers to reconstructing a higher resolution image from the observed lowresolution (LR) image, has received substantial attention due to its tremendous application potentials. Despite the breakthroughs of recently proposed SR methods using convolutional neural networks, their generated results usually lack of preserving structural (high-frequency) details. In this paper, regarding global boundary context and residual context as complimentary information for enhancing structural details in image restoration, we develop a contextualized multitask learning framework to address the SR problem. Specifically, our method first extracts convolutional features from the input LR image and applies one deconvolutional module to interpolate the LR feature maps in a content-adaptive way. Then, the resulting feature maps are fed into two branched subnetworks. On several standard benchmarks (e.g., Set5, Set14, and BSD200), our extensive evaluations demonstrate the effectiveness of our SR method on achieving both higher restoration quality and computational efficiency compared with several state-of-the-art SR approaches.
机译:单图像超分辨率(SR)是指从观察到的低分辨率(LR)图像中重建高分辨率图像,由于其巨大的应用潜力而受到了广泛的关注。尽管最近提出的使用卷积神经网络的SR方法取得了突破,但其生成的结果通常缺乏保留结构(高频)细节的功能。在本文中,将全局边界上下文和剩余上下文作为补充信息,以增强图像恢复中的结构细节,我们开发了一个上下文化的多任务学习框架来解决SR问题。具体来说,我们的方法首先从输入的LR图像中提取卷积特征,然后应用一个反卷积模块以内容自适应的方式内插LR特征图。然后,将生成的特征图馈入两个分支子网中。在几种标准基准(例如Set5,Set14和BSD200)上,我们进行的广泛评估证明了与几种最新的SR方法相比,我们的SR方法在实现更高的恢复质量和计算效率上的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号