首页> 外文期刊>IEEE transactions on multimedia >Temporal Action Localization in Untrimmed Videos Using Action Pattern Trees
【24h】

Temporal Action Localization in Untrimmed Videos Using Action Pattern Trees

机译:使用动作模式树在未修剪视频中进行时间动作本地化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel framework of automatically localizing action instances based on action pattern trees (AP-Trees) in a long untrimmed video. For localizing action instances in videos with varied temporal lengths, we first split videos into sequential segments and then use the AP-Trees to produce precise temporal boundaries of action instances. The AP-Trees can exploit the temporal information between segments of videos based on the label vectors of segments, by learning the occurrence frequency and order of segments. In AP-Trees, nodes stand for action class labels of segments and edges represent the temporal relationships between two consecutive segments. Thus, we can discover the occurrence frequencies of segments by searching paths of AP-Trees. In order to obtain accurate labels of video segments, we introduce deep neural networks to annotate the segments by simultaneously leveraging the spatio-temporal information and the high-level semantic feature of segments. In the networks, informative action maps are generated by a global average pooling layer to retain the spatio-temporal information of segments. An overlap loss function is employed to further improve the precision of label vectors of segments by considering the temporal overlap between segments and the ground truth. The experiments on THUMOS2014, MSR ActionII, and MPII Cooking datasets demonstrate the effectiveness of the method.
机译:在本文中,我们提出了一个新颖的框架,该框架基于未修剪的长视频中的动作模式树(AP-Trees)自动定位动作实例。为了在具有不同时间长度的视频中定位动作实例,我们首先将视频分成连续的片段,然后使用AP树来生成动作实例的精确时间边界。通过学习片段的出现频率和顺序,AP树可以基于片段的标签矢量来利用视频片段之间的时间信息。在AP树中,节点代表段的动作类标签,边缘表示两个连续段之间的时间关系。因此,我们可以通过搜索AP树的路径来发现段的出现频率。为了获得视频片段的准确标签,我们引入了深度神经网络,通过同时利用时空信息和片段的高级语义特征来对片段进行注释。在网络中,信息行动图由全局平均池层生成,以保留分段的时空信息。考虑到片段之间的时间重叠和基本事实,采用重叠损失函数进一步提高片段的标记矢量的精度。在THUMOS2014,MSR ActionII和MPII Cooking数据集上的实验证明了该方法的有效性。

著录项

  • 来源
    《IEEE transactions on multimedia》 |2019年第3期|717-730|共14页
  • 作者单位

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    SUNY Albany, Dept Elect & Comp Engn, Albany, NY 12222 USA;

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Temporal action localization; action pattern tree; informative action maps; overlap loss function;

    机译:时间动作定位;动作模式树;信息动作图;重叠损失函数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号