首页> 外文期刊>Neurocomputing >Graph-based temporal action co-localization from an untrimmed video
【24h】

Graph-based temporal action co-localization from an untrimmed video

机译:基于图的时间作用来自未经监控的视频的共同定位

获取原文
获取原文并翻译 | 示例

摘要

We present an efficient approach for temporal action co-localization (TACL), which means to simultaneously localize all action instances in an untrimmed video. Compared with the conventional instance-by instance action localization, TACL can exploit the contextual and temporal relationships among action instances to reduce the localization ambiguities. Motivated by the strong relational modeling capability of graph neural networks, we propose a Graph-based Temporal Action Co-Localization (G-TACL) method. By considering each action proposal as a node, G-TACL effectively aggregates contextual and temporal features from related action proposals to jointly recognize and localize all action instances in a single shot. Moreover, we introduce a novel multi-level consistency evaluator to measure the relatedness between any two action proposals. This is achieved by considering their high-level contextual similarities, low-level temporal coincidences and feature correlations. We exploit the Gated Recurrent Units (GRUs) to iteratively update the features of each node, which are then used to regress the temporal boundaries of action proposals and finally achieve action co-localization. Experimental results on three datasets, i.e., THUMOS14, MEXaction2 and ActivityNet v1.3 datasets demonstrate that our G-TACL is superior or comparable to the state-of-the-arts.(c) 2021 Elsevier B.V. All rights reserved.
机译:我们提出了一种有效的时间作用共定位(TACL)的方法,这意味着同时本地化未经监控视频中的所有动作实例。与传统的实例相比,通过实例操作本地化,TACL可以利用动作实例之间的上下文和时间关系来减少本地化歧义。通过图形神经网络的强关系建模能力的激励,我们提出了一种基于图的时间作用共定值(G-TACL)方法。通过将每个动作提案视为节点,G-TACL有效地聚合了相关动作建议的上下文和时间特征,以共同识别和本地化单一拍摄中的所有动作实例。此外,我们介绍了一种新的多级一致性评估员,以衡量任何两个行动建议之间的相关性。这是通过考虑其高级上下文相似性,低级时间巧克力和特征相关性来实现的。我们利用所通用的经常性单位(GRUS)来迭代更新每个节点的功能,然后将其用于回归动作提案的时间边界,并最终实现动作共定位。三个数据集的实验结果,即Thumos14,Mexaction2和ActivityNet V1.3数据集表明,我们的G-TACL与最先进的G-TACL是优越的或比较。(c)2021 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第28期|211-223|共13页
  • 作者单位

    Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Shaanxi Peoples R China;

    ABB Corp Res Ctr Raleigh NC 27606 USA;

    Univ Illinois Dept Comp Sci Chicago IL 60607 USA;

    Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Shaanxi Peoples R China;

    Wormpex AI Res Bellevue WA 98004 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Temporal action co-localization; Multi-level consistency evaluator;

    机译:时间动作共定位;多级一致性评估员;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号