首页> 外文期刊>Multidiscipline modeling in materials and structures >Comparison of manifold learning algorithms used in FSI data interpolation of curved surfaces
【24h】

Comparison of manifold learning algorithms used in FSI data interpolation of curved surfaces

机译:用于曲面FSI数据插值的流形学习算法的比较

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The purpose of this paper is to discuss a data interpolation method of curved surfaces from the point of dimension reduction and manifold learning. Design/methodology/approach - Instead of transmitting data of curved surfaces in 3D space directly, the method transmits data by unfolding 3D curved surfaces into 2D planes by manifold learning algorithms. The similarity between surface unfolding and manifold learning is discussed. Projection ability of several manifold learning algorithms is investigated to unfold curved surface. The algorithms' efficiency and their influences on the accuracy of data transmission are investigated by three examples. Findings - It is found that the data interpolations using manifold learning algorithms LLE, HLLE and LTSA are efficient and accurate. Originality/value - The method can improve the accuracies of coupling data interpolation and fluidstructure interaction simulation involving curved surfaces.
机译:目的-本文的目的是从降维和流形学习的角度讨论曲面的数据插值方法。设计/方法/方法-该方法不是直接在3D空间中传输曲面数据,而是通过流形学习算法将3D曲面展开为2D平面来传输数据。讨论了表面展开与流形学习之间的相似性。研究了几种流形学习算法的投影能力以展开曲面。通过三个例子研究了算法的效率及其对数据传输精度的影响。结果-发现使用流形学习算法LLE,HLLE和LTSA进行数据插值是高效且准确的。原创性/价值-该方法可以提高耦合数据插值和涉及曲面的流固耦合仿真的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号