首页> 外文期刊>Multidimensional Systems and Signal Processing >A direct-construction approach to multidimensional realization and LFR uncertainty modeling
【24h】

A direct-construction approach to multidimensional realization and LFR uncertainty modeling

机译:多维实现和LFR不确定性建模的直接构建方法

获取原文
获取原文并翻译 | 示例

摘要

This article proposes a direct-construction realization procedure that simultaneously treats all the involved variables and/or uncertain parameters and directly generates an overall multidimensional (n-D) Roesser model realization or linear fractional representation (LFR) model for a given n-D polynomial or causal rational transfer matrix. It is shown for the first time that the realization problem for an n-D transfer matrix G(z 1, . . . , z n ), which is assumed without loss of generality to be strictly causal and given in the form of G(z 1, . . . , z n )=N r (z 1, . . . , z n )D r ?1 (z 1,..., z n ) with D r (0, . . . , 0)=I and N r (0, . . . , 0) = 0, can be essentially reduced to the construction of an admissible n-D polynomial matrix Ψ for which there exist real matrices A, B, C such that N r (z 1, . . . , z n ) = CZΨ and Ψ D r ?1 (z 1, . . . , z n ) = (I ? AZ)?1 B with Z being the corresponding variable and/or uncertainty block structure, i.e., ${Z={rm diag} {z_1I_{r_1},ldots,z_nI_{r_n} }}$ . This important fact reveals a substantial difference between the 1-D and n-D (n ≥ 2) realization problems as in the 1-D case Ψ can only be a monomial matrix and never a polynomial one. Necessary and sufficient conditions for Ψ to satisfy the above restrictions are given and algorithms are proposed for the construction of such an admissible n-D polynomial matrix Ψ with low order (for an arbitrary but fixed field of coefficients) and the corresponding realization. Symbolic and numerical examples are presented to illustrate the basic ideas as well as the effectiveness of the proposed procedure.
机译:本文提出了一种直接构造实现过程,该过程同时处理所有涉及的变量和/或不确定参数,并针对给定的nD多项式或因果有理转移直接生成整体多维(nD)Roesser模型实现或线性分数表示(LFR)模型矩阵。首次表明,nD传递矩阵G(z 1 ,..,zn )的实现问题在不失一般性的情况下被假定为严格的因果关系,并在G(z 1 ,..,zn )= N r (z 1 ,..,zn )D r < / sub>?1 (z 1 ,...,zn )且D r (0,。。。,0)= I and N r (0,。。。,0)= 0,基本上可以简化为可容许的nD多项式矩阵construction的构造,对于该矩阵,存在实际矩阵A,B,C,使得N r (z 1 ,...,zn )=CZΨ和ΨD ?1 (z 1 ,...,zn )= (I?AZ)?1 B,其中Z是相应的变量和/或不确定性块结构,即$ {Z = {rm diag} {z_1I_ {r_1},ldots,z_nI_ {r_n}}} $ 。这一重要事实揭示了一维和n-D(n≥2)实现问题之间的实质区别,因为在一维情况下,Ψ只能是一个单项式矩阵,而不能是多项式。给出了满足上述限制的and的充要条件,并提出了构建低阶n维D多项式矩阵algorithms的算法(对于任意但固定的系数域)和相应的实现。给出了符号和数字示例,以说明基本思想以及所提出程序的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号