首页> 外文期刊>Multidimensional Systems and Signal Processing >Coefficient-dependent direct-construction approach to realization of multidimensional systems in Roesser model
【24h】

Coefficient-dependent direct-construction approach to realization of multidimensional systems in Roesser model

机译:Roesser模型中依赖系数的直接构造方法实现多维系统

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to present a significant generalization to the direct-construction realization approach proposed recently by the authors, with an emphasis on the coefficient-dependent nature of the realization problem of multidimensional (n-D) systems in Roesser model. The central idea in the approach is to reduce the n-D realization problem to the construction of an admissible n-D polynomial matrix where careful treating of the structure-dependent and coefficient-dependent properties is required. It is shown that though the direct construction of an admissible n-D polynomial matrix is very difficult, it is possible to construct first an admissible n-D monomial matrix, say Ψ, which can be constructively obtained based only on the structure-dependent property, and then to build the polynomial one by combining some monomial entries into polynomial ones when the corresponding coefficients satisfy certain proportional conditions. Specifically, the relationship among the monomial entries of Ψ is first investigated thoroughly and some new concepts and notations necessary for the technique development are introduced. Then, some fundamental facts on combinability conditions and combination techniques are clarified, and algorithms for the generation of an admissible n-D polynomial matrix and the corresponding realization are established. Furthermore, a preprocessing strategy on entry re-assignment is explored, which can lead to possible further significant reduction in the realization order. Several symbolic and numerical examples are presented to illustrate the basic ideas as well as the effectiveness of the proposed approach.
机译:本文的目的是对作者最近提出的直接构建实现方法进行重要的概括,重点是Roesser模型中多维(n-D)系统实现问题的系数依赖性。该方法的中心思想是将nD实现问题简化为可允许的nD多项式矩阵的构造,其中需要仔细处理结构相关和系数相关的属性。结果表明,尽管直接构造可允许的nD多项式矩阵非常困难,但是可以首先构造一个可允许的nD多项式矩阵,即Ψ,该矩阵只能基于与结构相关的性质来构造性地获得,然后当相应的系数满足一定比例条件时,通过将一些多项式项组合成多项式项来构建多项式。具体来说,首先彻底研究Ψ的单项式之间的关系,并介绍一些技术发展所必需的新概念和符号。然后,阐明了有关可组合性条件和组合技术的一些基本事实,并建立了可允许的n-D多项式矩阵的生成算法和相应的实现。此外,探索了关于条目重新分配的预处理策略,这可能导致实现顺序进一步降低。给出了几个符号和数字示例,以说明基本思想以及所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号