首页> 外文期刊>Monte Carlo Methods and Applications >Random walk on rectangles and parallelepipeds algorithm for solving transient anisotropic drift-diffusion-reaction problems
【24h】

Random walk on rectangles and parallelepipeds algorithm for solving transient anisotropic drift-diffusion-reaction problems

机译:随机步行在矩形和平行六面体算法中解决瞬态各向异性漂移扩散 - 反应问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper a random walk on arbitrary rectangles (2D) and parallelepipeds (3D) algorithm is developed for solving transient anisotropic drift-diffusion-reaction equations. The method is meshless, both in space and time. The approach is based on a rigorous representation of the first passage time and exit point distributions for arbitrary rectangles and parallelepipeds. The probabilistic representation is then transformed to a form convenient for stochastic simulation. The method can be used to calculate fluxes to any desired part of the boundary, from arbitrary sources. A global version of the method we call here as a stochastic expansion from cell to cell (SECC) algorithm for calculating the whole solution field is suggested. Application of this method to solve a system of transport equations for electrons and holes in a semico-ductor is discussed. This system consists of the continuity equations for particle densities and a Poisson equation for electrostatic potential. To validate the method we have derived a series of exact solutions of the drift-diffusion-reaction problem in a three-dimensional layer presented in the last section in details.
机译:在本文中,开发了用于求解瞬态各向异性漂移扩散反应方程的任意矩形(2D)和平行六面积(3D)算法的随机步行。该方法在空间和时间内是无纹的。该方法基于任意矩形和平行六面积的第一通道时间和退出点分布的严格表示。然后将概率表示转化为方便随机模拟的形式。该方法可用于从任意源计算到边界的任何所需部分的助熔剂。提出了一种全球版本,我们在此称为来自小区到小区的随机扩展(SECC)算法用于计算整个解决方案领域。讨论了该方法的应用来解决半导体中电子和孔的传输方程系统。该系统包括用于粒子密度的连续性方程和静电潜力的泊松方程。为了验证该方法,我们在详细介绍的最后一节中呈现的三维层中衍生出一系列精确的漂移扩散反应问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号