首页> 外文期刊>Monte Carlo Methods and Applications >An algorithm for on-the-fly generation of samples of non-stationary Gaussian processes based on a sampling theorem
【24h】

An algorithm for on-the-fly generation of samples of non-stationary Gaussian processes based on a sampling theorem

机译:基于采样定理动态生成非平稳高斯过程样本的算法

获取原文
获取原文并翻译 | 示例

摘要

A Monte Carlo algorithm is developed for generating samples of real-valued non-stationary Gaussian processes. The method is based on a generalized version of Shannon's sampling theorem for bandlimited deterministic signals, as well as an efficient algorithm for generating conditional Gaussian variables. One feature of the method that is attractive for engineering applications involving stochastic loads is the ability of the algorithm to be implemented "on-the-fly" meaning that, given the value of the sample of the process at the current time step, it provides the value for the sample of the process at the next time step. Theoretical arguments are supported by numerical examples demonstrating the implementation, efficiency, and accuracy of the proposed Monte Carlo simulation algorithm.
机译:开发了一种蒙特卡罗算法,用于生成实值非平稳高斯过程的样本。该方法基于用于带限确定性信号的Shannon采样定理的广义版本,以及用于生成条件高斯变量的有效算法。该方法对涉及随机负载的工程应用有吸引力的一个特征是该算法可以“即时”实施的能力,这意味着,在当前时间步长的过程中,给定过程样本的值,它可以提供下一个时间步的过程样本的值。数值示例支持了理论论证,这些示例说明了所提出的蒙特卡洛模拟算法的实现,效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号