首页> 外文期刊>Monte Carlo Methods and Applications >Random walk on spheres method for solving drift-diffusion problems
【24h】

Random walk on spheres method for solving drift-diffusion problems

机译:解决漂移扩散问题的球形随机游走法

获取原文
获取原文并翻译 | 示例

摘要

The well-known random walk on spheres method (RWS) for the Laplace equation is here extended to drift-diffusion problems. First we derive a generalized spherical mean value relation which is an extension of the classical integral mean value relation for the Laplace equation. Next we give a probabilistic interpretation of the kernel. The distribution on the sphere generated by this kernel is then related to the von Mises-Fisher distribution on the sphere which can be efficiently simulated. The rigorous expressions are given for the case of constant velocity drift, but the algorithm is then extended to solve drift-diffusion problems with arbitrary varying drift velocity vector. Applications to cathodoluminescence and EBIC imaging of defects and dislocations in semiconductors are discussed.
机译:拉普拉斯方程的众所周知的球面上随机游走法(RWS)在此扩展为漂移扩散问题。首先,我们推导了广义球面均值关系,它是Laplace方程的经典积分均值关系的扩展。接下来,我们对内核进行概率解释。然后,由该内核生成的球体上的分布与球体上的von Mises-Fisher分布有关,可以有效地模拟该分布。对于恒定速度漂移的情况给出了严格的表达式,但是随后将该算法扩展为解决具有任意变化的漂移速度矢量的漂移扩散问题。讨论了阴极缺陷和位错在阴极发光和EBIC成像中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号