首页> 外文期刊>Mobile networks & applications >Fractal Research on the Edge Blur Threshold Recognition in Big Data Classification
【24h】

Fractal Research on the Edge Blur Threshold Recognition in Big Data Classification

机译:大数据分类中边缘模糊阈值识别的分形研究

获取原文
获取原文并翻译 | 示例

摘要

Research of the edge blur threshold recognition technology in big multimedia data classification has a great significance, which improves the data storage and safety performance. The traditional suspected boundary problem processing method mainly classified data through their features which were large amount, various types, less density of value and high speed of demand processing. That led to the problems such as inaccuracies and great errors. However, the edge blur threshold recognition technology summarized the methods of classifying data and put forward the principle of data classification. It classified the big multimedia data based on the reduction of feature dimensions and on the differences between the selected data. To determine the edge blur threshold, it used the least squares method. Combined with the decision tree method, it finally realized the classification of big multimedia data. The experimental results showed that the improved method has high precision and low recall rate with less time. This means the presented method has a certain advantage when compares with the classical method.
机译:边缘模糊阈值识别技术的研究在大型多媒体数据分类中具有重要意义,它可以改善数据的存储和安全性能。传统的疑似边界问题处理方法主要是根据数据量大,类型多样,价值密度小,需求处理速度快等特点对数据进行分类。这导致了诸如错误和严重错误之类的问题。然而,边缘模糊阈值识别技术总结了数据分类的方法,并提出了数据分类的原理。它根据特征尺寸的缩减以及所选数据之间的差异对大型多媒体数据进行了分类。为了确定边缘模糊阈值,它使用了最小二乘法。结合决策树方法,最终实现了大多媒体数据的分类。实验结果表明,改进的方法具有较高的精度和较低的查全率,而且时间较短。这意味着与经典方法相比,该方法具有一定的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号