首页> 外文期刊>Mobile networks & applications >Deploying Data-intensive Applications with Multiple Services Components on Edge
【24h】

Deploying Data-intensive Applications with Multiple Services Components on Edge

机译:在Edge上部署具有多个服务组件的数据密集型应用程序

获取原文
获取原文并翻译 | 示例

摘要

In the information age, the amount of data is huge which shows an exponential growth. In addition, most services of application need to be interdependent with data, cause that they can be executed under the driven data. In fact, such a data-intensive service deployment requires a good coordination among different edge servers. It is not easy to handle such issues while data transmission and load balancing conditions change constantly between edge servers and data-intensive services. Based on the above description, this paper proposes a Data-intensive Service Edge deployment scheme based on Genetic Algorithm (DSEGA). Firstly, a data-intensive edge service composition and an edge server model will be generated based on a graph theory algorithm, then five algorithms of Genetic Algorithm (GA), Simulated Annealing Algorithm (SA), Ant Colony Algorithm (ACO), Optimized Ant Colony Algorithm (ACO_v) and Hill Climbing will be respectively used to obtain an optimal deployment scheme, so that the response time of the data-intensive edge service deployment reaches a minimum under storage constraints and load balancing conditions. The experimental results show that the DSEGA algorithm can get the shortest response time among the service, data components and edge servers.
机译:在信息时代,数据量巨大,呈指数级增长。另外,大多数应用程序服务需要与数据相互依赖,导致它们可以在驱动数据下执行。实际上,这种数据密集型服务部署需要不同边缘服务器之间的良好协调。当边缘服务器和数据密集型服务之间的数据传输和负载平衡条件不断变化时,解决这些问题并不容易。基于以上描述,本文提出了一种基于遗传算法(DSEGA)的数据密集型服务边缘部署方案。首先基于图论算法生成数据密集型边缘服务组合和边缘服务器模型,然后基于遗传算法(GA),模拟退火算法(SA),蚁群算法(ACO),优化蚂蚁五种算法殖民地算法(ACO_v)和爬坡将分别用于获得最佳部署方案,以便在存储约束和负载平衡条件下,数据密集型边缘服务部署的响应时间达到最小。实验结果表明,DSEGA算法可以在服务,数据组件和边缘服务器之间获得最短的响应时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号